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A method is developed for ~v~tigat~g the oscillations of systems with almost- 
periodic coefficients, based on Kamenkov’s ideas [l] on the co~tmction of 
stationary solutions of systems with periodic coefficients and on the separation 
of motions. In contrast to [lJ it is assumed that under the vanishing of a small 
parameter p the system’s characteristic equation has, besides n pairs of pure 
imaginary roots, m zero roots and h coots with negative real parts, Non- 
resonance and resonance cases are considered, Conditions are obtained for the 
existence of stationary solutions with respect to terms of first order in thesmall 

parameter. An example is presented. 

X We examine the problem of the existence and the structure of the solutions, 
stationary in the sense of [lJ* of a system whose motion obeys the equations (pik are 
constant coefficients and p is a small positive parameter) 

Xi’ =I: $I Pikxk $_ jzl pLjXij (2, ‘> + ,S! PjfG lt) 

(x = <, . . ., xnt; i = 1, . . ., n,lTl = 2n + n + h) 

(1.1) 

Here the right hand sides are convergent series in parameter p in the domain of varia- 

tion being studied of the variables 1~r, . . ., &, and of the parameter: Xij (j = 1, 
2 , . . . ) are polynomials of any finite order with coefficients almost-periodic in t , 
vanishing for zr = . , .= xnx= 0; fir (t) (j = 0, 1, 2, . . .) are almost- 
periodic time functions. We prepresent the almost-periodic functions Xii and fij 

by finite Fourier series with arbitrary frequency spectrum (generalized Fourier series), 
Any quasilinear system whose nonlinear terms have the structure of Xij, while the 
coefficients of the linear terms are periodic functions of one and the same period,can be 
brought to form (1.1) [Z]. Various cases wherein systems whose linear terms have 
almost-periodic coefficients are reducible to form (1.1) are known as well [3]. 

We assume that the characteristic equation 1 pik - 6& 1 = 0 has 7& pairs of 
pure imaginary roots, m zero roots, and h roots with negative real parts. The numb- 
er of groups of solutions corresponding to the zero roots is assumed arbitrary. At first 
we assume that the condition 

i k,h, # E 
s=1 

for the absence of resonances is fulfilled for the pure imaginary roots fib, (s = 1, 

* . ‘,% n) l 
Here k, and E are positive and negative integers, including zero; 
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the k, satisfy the condition 

O<r,(&c,<K 
8 

The number K is determined by the index of the highest form occurring in the Xi,. 
The eigenvalues A, are taken as being incommensurable with the frequency spectrum 
of the almost-periodic coefficients and functions occurring in the right hand sides of 

( 1.1) (nonresonance case), i. e. I relations analogous to those presented above are ful- 
filled for the frequencies h, and the frequency spectrum of the almost-periodic co- 
efficients of functions Xi, and the functions fto and fil. The roots with negat- 

ive real parts may be both simple as well as multipie with an arbitrary number of 
groups of soluttons. 

Under the assumptions made,system (1.1) is reduced to 

. 
u, = 

i=l i==o 

vj’ = yj”j + xj-lvj-l + +jl piVj; (y, 27 4 UT t) + i$e P'Liyji (t) 

(Y = Yl7 . . *, y,; z = 21, . . ., 2,; u = up . . ., u,; v = u,, . . 

*, % s = 1, * 1) *, n; a = 1, . . ., m; j = 1, . . .) h; CT0 = x0 = 0) 

by a nonsingular linear transformation [4]. Here y8, z, and U, are critical vari- 
ables, VI are the variables of the adjoint system; the functions Ys~, ZS~, UbLi 
ad ,Yji (i = I, 2, . . .) have a structure analogous to that of Xii and are poly- 

nomials of arbitrary finite degree in y, z, u and u, vanishing when y = Z = 

u=v=o, with coefficients almost-periodic in t . The number different from 

zero owl and “j-1 is determined by the multiplicity of the zero roots and of the 

roots with negative real parts and by the number of groups of solutions corresponding 
to these roots. 

To solve the problem posed we show that nonautonomous transformations with al- 

most-periodic coefficients exist leading (1. ‘2) to a form when: 

functions corresponding to Cpsi (t), ~si (t), 0,i (t) and J’ji (t) (i = 0, I) in 
the original system are absent in the transformed system; 

terms of first order in p, , depending on the noncritical variables $, . * *, vh 

are absent in the critical system; 
in the critical system, up to p to the first power, inclusive, the coefficients of 

polynomials are independent of time. 
From the system thus transformed we obtain the equations for thestationary amplit- 

udes and we construct the desired stationary solutions. By investigating the approxi- 

mate solutions found for stability and by estimating the magnitudes of their deviations 
from the solutions of the complete system. we determine the conditions for the exist- 
ence of stationary osci&ttions from the first-order terms in parameter P. 
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1”. Setting Es* = ys -{- iz, and Es” = gs - iZ, in (1. Z), we pass to the 
complex form of writing the subsystem with pure imaginary roots and we transform the 

resulting system by the changes 

ES* = 5, -t- IV,, (t) -t- pw,, (t), k = % + %o (4 “- Pkzl (4 (1.3) 

vj = 5j + Xj0 tt) -t- PXjl tt> 

Here wso, Wslr %o, @CW Xjo and Xi1 are defined such that the functions cor- 

responding to rpso*, qS1*, oao, kr Yj0 and yjr of the original system vanish 

in the transformed system. For this it is sufficient that Wso, W’,,, [I)~~, coal, Xi0 

and XI1 satisfy the equations 

dW,,ldt = ih,W,o -1 (pso* (t) 
dW,,/‘dt = ih,Ws, i- cpsl* (t) + 3sz* (W,, rot ~0, ~0, t) 

(1.4) 

d~~o/dt = ~a-~wcz-l,,, -t f3ao (t) 
dw,,ldt = G,,w,_~,~ -t %zl (t) + ~a, wo, wo> mo9 x0, t) 
dxjoldt r= YjXjo + “+1X1-1,0 + YIO (t) 

dXjlldt = VjXjl + Xj-lXj-lrl + YjI (t) + vj, 

(W, = WIO, . . ., w,o; W, = FV10, . . *, GQ); wo = WlO, . 

* .t w,o; X0 = x10, ’ * -7 Xho; rp,Ii* = (Psk + Wk (k = 07 $1; 

SS1* = Y,, + iZsl) 
The first four of Eqs. (1.4) have almost-periodic solutions if and only if 

f 

lim f 1 e-ihstva* (t) dt = 
t-K0 

0 

(1.5) 

t 

lim f 1 emihst [r+-~* (t) + &* (Wo, wo, x0, t)] dt = 0 
t-r= 

0 

t t 

lim -!I- 
f-ma t s 

0,(t)dt = lim +l P&I (t) + U,I (@‘o> wo, 00, xo, t)l dt = @ 
0 

f--J 
0 

The first condition in (1.5) is always fulfilled under the assumptions made on the in- 
commensurability of As with the frequency spectrum of the almost-periodic func- 
tions. In what follows we assume the fulfilment of the second condition in (1.5). 

Since Re VI # 0, by virtue of the Neugebauer - Bohr theorem [3,5] the last 
two of Eqs. (1.4) always have almost-periodic solutions when yja (t) and yjl (t) 
are almost-periodic. As a result of transformation (1.3) the system becomes 

%’ = i&L + iaI PiEsi (ET 57 q7 t;, t) + j, P’%i* (t) 
(1.6) 

E,’ = - ihsEs + ii Pi% (Et 57 ri, 59 t, + j2 P%ii* tt> 

rlu * == (Jcx-lqx-1 -t- igl pi&i (Et ET q, 57 t> + jj I.“.Qzi* (t) 

&’ = VjSj + xj-15j-l+ ig yiGji (ET ET qy 5, t) + i$2 P’Y.S* (t) 
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(E = El, . * ., E,; Y = rll, * * -9 rm; 5 = 51, - - -7 5h) 

2’. We represent e,, and HaI in the form 

(k) = (k,, . . ., kh); k = k, $- . . . i- kh 

Here e$j(t) and f(‘) al(l) (t) are known almost-periodic functions of t. We intro- 
duce the ch&ge of variables 

and we define g$& and ~~~~~~ such that in the reformed system the polynomi- 
als corresponding to E$ (5, t) and F$ (5, t) vanish. Then, starting from 
the functions 

(o,,..,o,k) 
gsl(o,...,o,~) 

ad /Jn,...,o,k) 
al(o,...,o,u 

for prescribed 1 and k and, next, defining 

&l(O,...,O,l, 
fo,...,l,k-1) and h~ii,.“‘k~:~ 

,. ., 9 

etc. [S], for $&;, and 
h’k’ 

al(r) we obtain the equations 

(1.8) 

Here c$& (t) and d$& (t) are known almost-periodic functions that are combina- 

tions of 4% (r), f$~j (9 and of the functions g${, (t), h$& (t) found earl- 
ier. In the general case the expressions i6, -j- 8 and i6, _t- 6 have nonzero 

real parts. Consequently, each of Eqs. (1,8) has one and only one almost-periodic 
solution [5& After changes (1.7) system (1.6) takes the form 

PS’ = i&F, + @,I (Pt P, Q? 0 + (1.9) 
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qa’ = %-1%1 f PQCU(P, P, 4, t) + iis P’Qai (p, p, q, 5, t) + 

Here the polyno~a~ Psi,, P,i, Qai and Gji* (i = 1, 2, . . .> retain the struc- 
ture Of functions Xi j. 

3’. We transform system (1.9) be setting [7] 

We choose the functions &r(l) and balW in such a way that the polynomials play- 

ing the role of P,, and Qal in the transformed system do not depend on time. 
Then aSI and b,l(z) must satisfy the equations (once again we define the func- 

tions in the above-mentioned order) 

Here M,,(r) (t) and I&(l) (t) are known time functions, being collections of 
coefficients of polynomials PaI, P,r, Qar and of functions a,,(‘), bal(‘); Nsl*(‘) 
and R,(z~ are the coefficients, yet to be determined, of the polynomials in the 

right hand sides of the system resulting after malformation (1.10). 
We seek almost-periodic solutions of Eqs. (1.11). Two cases are possible: 

6, and 6, vanish; then the equations have almost-periodic solutions if. NsI*(‘) 

and K,r(l) have been determined by the equalities 

Consequently, N,,“(“) and K,,cr) are constants (zero, in a special case) ; 
6, and 6s are nonzero. We represent the functions MS,(‘). and La,(l) 

as generalized Fourier series 

Here M& and L(‘) a1.k are complex constants and 

are arbitrary real numbers. 
mk (k = 0, 1, . . ., N) 

In this case the particular solutions of system (l.l.l) take 

the form 
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and are almost-periodic for any N,,*(‘) and K~lfrf by virtue of the fact that 
6, -f- mk + 0 and 6, -I- mk # 0 (k = 0, . . ., N) (nonresonance case). We 
set N 

31 
VI z &I(') = 0. As a result of the transformations the system becomes 

P8 *’ = ih*pS* -t pp,,* (P*, B”, P> + 0 w (1.12) 
ps*’ = -i?@,* + pFsl* (p*, ii*, P) + 0 W> 

Pa 
*- - %-~pa-l -t p& @*1 F*t P> + 0 cct”> 

cj’ = vi Cj + xi-1 cj-1 + @jl@“, P*, P, 5, t) + lz,‘_“21 

p,,* = ps” ,F;, Iv;y (pl*&*)‘l. . . (J?,“Fn”)‘” p:2n+l * * * Pm 

Da1 = gzl K& (pl*pl*)ll. . . {~~~~~*)‘n & + . . pkn’ 

(I) = tE;: f . ., l,, l,, . - -7 4z, L+1t * * *1 Ll+mf 
1 = 21, + . . . -t 21, + 1,,+1 + . . . f L&n 

We observe that any one of the two equations in complex form is equivalent to two 
equations for pure imaginary roots in canonic form, 
coordinates ps* = r,e’as and pS* = * ?$?‘8, 

If in (1.32) we pass to the polar 
we obtain 

rs‘ = prS lgO A$;” . . . rfnp+ . . . pkrn + 0 (P2J (1.13) 

0,’ =;r h, +‘p lzo B$$:‘l. . . +pF , . . pbrn + 0 (P”) 

pa’ = ci~_Ipa-lli_ @ lzl cgry * * %a 12n+1 . . . p$m ’ J.73 Pl + 0 VI 

cj’ = vj51 + x+x<---, + FGj, fry e, P, 5, 4 + 0 (~‘1 
p = rl, . . ., r,; e = 81, . . .) 8,; p = pl, . . ., pm) 

Here 
N,,*(r). 

A,l(l) and B,$‘) are, respectively, the real and the imaginary parts of 

Let 11s consider the equations 

(1.14) 

If system (1.14) has real no~egative solntions fie2, . . -, r,o” and real solutions 

P 101 - * *, Pmo, then, by substituting them into tire transformations taking (1.1) to 
(1.13). we obtain the desired stationary solutions to within first order in p. The 
solutions of the second equation in system (1.13) for el, . . . , e,, and the bounded, 
in particular, almost-periodic solutions for &, . . ., &, are determined, to within 
first order in p, from the equations 
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(1.15) 

5; = VjCj + “j-1 Cj-1 f- PGj, (~0, 00, PO, 5, t) 

Here tlo = tllo, . . ., 0,, are solutions of the equations for 8,. 
Let us investigate the existence and the accuracy of the solutions obtained [I, S]* 

Let r, = r8a + Es*? pa z Paa -!- X&Z and Sj = Cjo 4-m Sj*, where SjO = 
[j. (t) are bounded solutions of the second group of equations in (1.15). Then, by 

virtue of (1.13) the deviations x<* (i = 1, . . . , n -t n) and cj” satisfy the 
equations 

n+m 

(1.16) 

(x = x1*, . . .) x:+)& z* = zl*, . . ,, zh*; 8 = e,, . . ., 8,; i - 
1 , * * *, n+m;j=1, . . ..h) 

Here Xi1 and Zj, do not contain forms of lower than second and first order, res- 
pectively;‘some of the numbers oi._r are zero. 

Let the roots of the characteristic equation 

1 paik 5 6d-l,~~-lai-, - Sik’, I = 0 (1.17) 

where 6&~+r = 0 for i # k and 6f_r,k_r = I, for i = k have only negat- 

ive real parts. If in the right hand sides of the system we discard terms with powers of 
p higher than first the solutions of the resulting system differ by an arbitrarily small 

amount from the solutions of the complete system (1.13) with a sufficiently small p . 
Let us prove this, assuming that all roots of the characteristic equation are simple and 
real. From the Newton diagram [9] it follows that we can represent all roots of (I. 17) 
in the form hOi = peihgi, where 0 < et < 1. Let all the roots be negative 
and distinct. Then, retaining the previous notation, by a linear change we transform 

system (1.16) to the form 

We chocx;e the Liapunov function 

i 

Here V, (z*) is determined by the equation 

bj*q* = 

h 

c *z - zj 
j=l 

Func~on V, (z*) is ~gn-def~ite because &? vf ( 0. Setting x1* = r* cos yi*, 
* 

zi * = I”* cos ?r’n+m+j and computing the derivative of function V relative 
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to (1.18), we obtain 
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i j k=l 

A, = yr*3Hl (yl*, . . ., Yi+i+m, r*) 
A, = p‘+*H, (yl*, . . . , YEtm+ht r*, 4 0, cL) 
A, = p.r*2H3 (yl*, . . ., yZ+m+h, r*, 8, 0 
A, = p2r*H4 (yl*, . . ., YZ+~+~,, r*, 0, t, p) 

Here 0 < &i < 1, h,i < 0, the functions 
/l”Xi*Xi j 

pnr*mHk are various products of 
and of the functions 

ZdV, / dZ*j~nZi j* 

For a sufficiently small CL, v’ < 0 on the sphere 

TX? + Tz” = re2 = (~l-E)2 (1.19) 

where 8 is an arbitrarily small positive number. Consequently, if the initial values 
Of Xi* and Zj* satisfy the conditions 1 Xi* (IO) ) < L and ( Zj* (t,) ) < L 
(L defines a domain into which the points of the surface V = M do not penetrate, 

where M is the lower bound of V on sphere (1.19)). then I xi* (t) 1 < ylme and 

I Zj* (t) ( < Ccl-e for any t in the interval (0, cm). 
Analogous arguments are valid for the case of multiple and complex roots. If 

among the 3Loi even one has a positive real part, the resulting solutions will not arbit- 

rarily slightly differ from the solutions of the complete system. If among the a,i 
even one has a zero real part, then the problem of the existence of stationary oscilla- 

tions in system (1.1) cannot be solved by using just terms of first order in CL. 

2. Let us consider the resonance case. In contrast to Sect. 1 we assume that reson- 
ances of the form 

sh,k, = E 
s 

are possible for the pure imaginary roots +ih, (s = 1, . . . , n) of the characterist- 
ic equation of system (1.1). We take it that the h, are commensurable with the 
frequency spectrum of the almost-periodic coefficients and functions in (1.1). The 
pure imaginary roots may be multiple with an arbitrary number of groups of solutions. 
In addition, we assume that when Xi, E 0 system (1.1) admits of almost-periodic 
solutions correct to within first order in p. For the resonance case the system’s can- 
onic form is 

Ys’ = - kb + BS-lYS-1 + 5 Piy8i (YI 27 u7 u7 t> + ijo PiTSi CL) (2.1) 
i=l 

&I' = h?Y8 + PI-1%-l+ iBIPiz.Si (Y7 z, u7 u7 t)+ 2 p$!si(t) 
i=o 

U a* = U,_lU,l +,jl piuCCi (Y, 27 u, u7 t> + i ~%i (t) 
i=O 
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The general method of investigation of the system is analogous to that in Sect. 1 (also 
see [IO] ). 

We apply a ~a~forma~on analogous to that in I” of Sect. 1 for the nonresonance 
case, After passing from variables ys and z, to the complex-conjugate variables 

E 4 and & and after the changes 

and ~alung into a,‘,‘~~t~~~‘;“_~~~~e-~~s~ (8 = 1, . . ., n) 

. . 
s - s-1 if ps_1 # 0, we obtain 

Ps’ = &-I&I -I- PP,, -I- 0 (I& F’s = IL&~ + $5, -I- (2.2) 

0 (CL21 

Here the number of nonzero &_, is determined by the multiplicity of the critical 
roots and by the number of groups of solutions corresponding to the roots mentioned. 
The ~a~f~rrna~o~ in 2” and 3 * are carried out aM~og~sly to the nonr~onance case 
and system (2.2) is reduced to 

Pi’ = g,_lT+l + p JJl R$‘r: a . . ?+k+z + 0 (fk2) (2.3) 

Sj’ = vj5j + xj-~C,+1 I- pGjr* (~7 %, t) + 0 (p2) 
(r = i,, ...rrzn+m; g= Cl ,..., Ch; i--l, . . . . Zn+m; 
I = I, i_ . . . + zzn+%) 

In contrast to the nonresonance case the order of the subsystem corr~pondin~ to pure 
imaginary roots, in system (2.3), is not lowered. 

If the equations 

have real roots s;,, . . . , r2ntm,0, then, by substi~ting them into the transforma- 

tions taking (2.1) to (2.31, we obtain the desired stationary solutions which are almost- 
periodic when the almost-periodic solutions for cj (j = 1, . . ., h) are determin- 
ed to within p from the equations 

cj’ = vjcj + “j-l&-r + pGjl+ (~0, C, t) (ro = ~10r - * *, f~+m,d ('**I 

The method presented above for the construction of the ~iapunov function for the 

stationary oscillations found under the condition that the roots of the corresponding 
characteristic equation have negative real parts leads to the inequalities 
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where E is an arbitrarily small positive number and &o are bounded solutions of 
(2.4). From inequalities (2.5) it follows that 1 zk - zko 1 (k = 1, . . ., n,) are 
of order p for any t in the interval (0, oo). The latter is not valid in the non- 
resonance case . 

3. As an example let us consider the spatial oscillations of a rigid body in a 
liquid (see [ll], for example), the motion of whose rudders has been approximated 
by almost-periodic time functions. The origin of the coordinate system Azyz con- 
nected with the body is located at the point of application of the buoyancy force, 
while the coordinate planes coincide with the body’s planes of symmetry. The center 

of mass lies on the axis As. The motion of a dynamically and geometrically axis- 
ymmetric body in a connected system is described by the following differential equa- 

tions: 

u’ = -& fl, v’ = a (P,‘fe - xofs), w’ = a (Pz’fl f xofa) (3.1) 

p’ = $if*, q' = a bof3 + k&J, r' = a (- xofs -f- k.&fe) 
z 

cp’=p-ttgO(qcoscp-~sincp), g’=sece(qcoscp--sin@ 
0’ = q sin cp + r cos ‘p 
fi = m,-1 (-c&j +a + Cp CoS * CoS e) + x0 (qa + Pa) + kan’ (0 - wq) 

fs = -I mo [cguo + cp (sin ‘p sin 4 - cos 9 cos $ sin 6)] - 
ku’ur + km’wp - w’q 

fs = m,-’ [czv02 + cp (cos tp sin 4 + sin tp co8 9 sin e)j + 

ku’uq - ka’v~ - xopq 
f4 = mo-lb,mzvoa 
fa = mow1 fmvvoZ - cgxc (sin $ cos cp f- cos 9 sin g, sin 0) - 

zouq + XOVP + PzxPr 
fe = rn,-l [mzvoa + cgz, (sin II, sin ‘p - cos II, co9 cp sin @)I - 

zour -I- SOWP - PzLxPq 

a = (pzrk;, - r,a)-l, pzz = Pz) - P,‘. 
Vx vY u,-_- 
us 

t v=- 
V8 

Vz 1 1 
W=o' 

I 
P=o,+-, 

6 
q=mgyyt r=o - 

z vl 

h.. 

kij = 1 + -$- (i=1,2), kk,d+, 
2 

k;,,=l++- 
.z 

h2a 2m J r J . 
be = tn~ , mo= psi’ cc’== mp zk 40’ 

‘_-E.-k 
P, - &a 68 

Z(C--d) 2G XC* b 
CP = pSv,~ ’ g e=psv,“* E 5 ‘7’ &#‘I 

%=~c+-tel v. = ff/u2+-v2i_ w2 

Here v,, vu, vz are the projections of the velocity of the point of application of 
the buoyancy force onto the connected axes As, Ay, AZ , respectively, o&r ci)Y, 

oz are the projections of the angular velocity, m is the body’s mass, J, and Jz 

are the axial moments of inertia, hij are the coefficients of the joining additional 

masses, G is the force of gravity, A is the buoyancy force, va is the steady-state 
value of the velocity of translation xc* is the coordinate of the center of mass, b 
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is the coordinate of the point of application of the resultant hydrodynamic forces act- 
ing on the rudder, relative to axis As, p is the liquid’s density, s is the character- 
istic area, I is the characteristic dimension, cp, $, 0 are the Euler angles. We 
assume the structure of the hydrodynamic coefficients to be as follows: 

cg = c,i, + b, (a2 + 8% m, = mXpp f m,% + ba (a& -I- I&) 

6, = Ai11 sin (o’,‘)t -t_ OL?) -+_.4jiz) sin (~$4 i_ 0f)) (k = 1, 2) 

Here CL and j3 are the attack and slip angles, 
W(l) 

6~ are the rudder deflection angles, 
and wk(a) are incommensurable frequencies. 

We introduce 

X0 = nzo*, &frf z u&.*(r), d,(z) = flk*c2), h’p = pm,*@ 

and we seek the stationary solutions of (3.1) in the form 

u = Us + ).LQ, zi = tL”i 

Here us = (cP I c~>‘I~ is the steady-state value of the velocity of the vertical deep- 
ening, zi = 71, W, P, +7, r, cp,% 0 for i = 2, 3, . . ., 9 , respectively. Setting 

mz OL- - -cV%glr~EzR i cp and mZr 2~ cyapr’ i kz21t we obtain, in the characteristic 

equation of the system for xi t two pairs of multiple pure imaginary roots with two 
groups of solutions, three zero roots with three groups of solutions, and two distinct 

negative roots. 
Let us determine the stationary solutions of such a system from the terms of first 

order in )A , Making transformations analogous to those in Sect. 2 for the resonance 

case, we obtain 

Here Dij?; are known constant coefficients and GI1 and GP1 are known polynom- 
ials with almost-periodic coefficients. Solving the amplitude equations and finding 

the stationary solutions for xi correct within p, we obtain, for example, for 4 

CC*= - codp B(t) H,$$ sin Sy’ i- 
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A ft) Hz01 + - 
wp 

sin biaf f 

Here 1Mg), Hiz, Q.!$d, Hgi, J$), G$‘) are constantstS, being combinations of the 

original coefficients, A(t) and B(t) are the solutions of the adjoint system, having 
the form 

A (t) = 
2u,x1,eant 

2us + pcclo (1 - ea’*t) ’ 90 = 21 (0) 

-+ j,,,) dt] 
0 

(all < 0, aa < 0, I?$@ = of% + f3fQ, a?) = ofja)t f fjia)) 

By choosing the hydrodynamic coefficients we can satisfy the existence conditions for 

the stationary solutions from terms of first order in p. With prescribed numerical 
values we have compared the analytic solutions found with the solutions of system 
(3. l), obtained by numerical methods, The calculation results practically coincide. 
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