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A method is developed for investigating the oscillations of systems with almost-
periodic coefficients, based on Kamenkov's ideas [1] on the construction of
stationary solutions of systems with periodic coefficients and on the separation
of motions. In contrast to [1] it is assumed that under the vanishing of a small
parameter u the system's characteristic equation has, besides n pairs of pure
imaginary roots, m zero roots and h roots with negative real parts,  Non-
resonance and resonance cases are considered, Conditions are obtained for the
existence of stationary solutions with respect to terms of first order in the small
parameter, An example is presented,

1. We examine the problem of the existence and the structure of the solutions,
stationary in the sense of [1], of a system whose motion obeys the equations (p;; are
constant coefficients and ® is a small positive parameter)

x| = kgx Pix%x + 211 WX (x, t) + 20 Wi (t) (1.1)
£ 7= J==
(=12, .. Zgi=1,.. ., 050 =2n+m+ k)

Here the right hand sides are convergent series in parameter p in the domain of varia-
tion being studied of the variables x,, . . ., n, and of the parameter: X;; (j = 1,
2, ...) are polynomials of any finite order with coefficients almost-periodic in ¢,
vanishing for z; = || = z,=0; f;; (®) G =0, 1,2, ...) are almost-
periodic time functions, We prepresent the almost-periodic functions X;; and f;;
by finite Fourier series with arbitrary frequency spectrum (generalized Fourier series).
Any quasilinear system whose nonlinear terms have the structure of X;;, while the
coefficients of the linear terms are periodic functions of one and the same period,can be
brought to form (1, 1) [2]. Various cases wherein systems whose linear terms have
almost-periodic coefficients are reducible to form (1, 1) are known as well [3].

We assume that the characteristic equation | p;z — §;p | = O has n pairs of
pure imaginary roots, m zero roots, and A roots with negative real parts. The numb-
er of groups of solutions corresponding to the zero roots is assumed arbitrary. At first
we assume that the condition

n
N khs#=E
8=1
for the absence of resonances is fulfilled for the pure imaginary roots —+iA, (¢ = 1,
.,.n)} . Here k, and E are positive and negative integers, including zero;
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Investigation of oscillations of quasilinear systems 1061

the k, satisfy the condition
0< Sl k| <K

The number K is determined by the index of the highest form occurring in the X;;.
The eigenvalues A, are taken as being incommensurable with the frequency spectrum
of the almost-periodic coefficients and functions occurring in the right hand sides of
(1. 1) (nonresonance case), i,e,, relations analogous to those presented above are ful-
filled for the frequencies A, and the frequency spectrum of the almost-periodic co-
efficients of functions X;; and the functions f;, and f;;. The roots with negat-
ive real parts may be both simple as well as multiple with an arbitrary number of
groups of solutions,

Under the assumptions made,system (1. 1) is reduced to

Y= =Mt 2 Y500, 0) + 3 won () (.9
& i=0

Z; = 7‘":?/: + 21 u‘iZ“ (y’ zZ, 4,0, t) + 2‘ “’i\p’i (t)
i= i=0

-

Ua = Og-1llg-1 -+ 2 RO (U, 2,4, v, 1) -+ D) Wi (2)
i=1 =0

Vi = Viv; 4+ Wi+ 2 WV (4,2, 8,0, 1) + 3 Wi (f)
i=1 i=0

(yzyy-'wyn;z:zlv°‘-1zn;u:u19"-yum;U:vl!'
wums=1, . ...,na=1,...,mj=1,..., h 0y =% = 0)

by a nonsingular linear transformation [4], Here y,, z, and u, are critical vari-
ables, U; are the variables of the adjoint system; the functions Y, Zy;, Uy,
and Y (i =1, 2,...) have a structure analogous to that of X;; and are poly-
nomials of arbitrary finite degree in y, z, 4 and v, vanishing when y = 2z =
u = v = 0, with coefficients almost-periodic in ¢. The number different from
Zero Gg.; and %;, is determined by the multiplicity of the zero roots and of the
roots with negative real parts and by the number of groups of solutions corresponding
to these roots,

To solve the problem posed we show that nonautonomous transformations with al-
most-periodic coefficients exist leading (1.2) to a form when;

functions corresponding to @,; (2), Ps; (1), 0q; (£) and v;; () (i =0, 1) in
the original system are absent in the transformed system;

terms of first orderin p, depending on the noncritical variables Uy, . . ., Un
are absent in the critical system;

in the critical system, up to p to the first power, inclusive, the coefficients of
polynomials are independent of time.

From the systemn thus transformed we obtain the equations for the stationary amplit-
udes and we construct the desired stationary solutions. By investigating the approxi-
mate solutions found for stability and by estimating the magnitudes of their deviations
from the solutions of the complete system, we determine the conditions for the exist-
ence of stationary oscillations from the first-order terms in parameter .
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1°, setting E* =y iz, and E* = y, — iz, in(1.2), we pass to the
complex form of writing the subsystem with pure imaginary roots and we transform the
resulting system by the changes
E* o= E o Weo () +pWi (), Ua = Na + O () + pog (£)
v; = C.i + %o () + s ()
Hete Wy, Wy, Oaes ®oy, Xjo and Xj1 are defined such that the functions cor-
responding to  @*, @™, Oas Oa1s Vjo and yj; of the original system vanish
in the transformed system. For this it is sufficient that Wy, Wiy ©49, @ay, Yjo
and Xj1 satisfy the equations
dWso/dt = A Wyo -+ @s0™ (0) -
dWs}./dt = i}"sWsl —1‘_ q}sl* (t) + 881* (Wm W{)! g, XQ? t)
dorge/dt = Og—y0a-3,0 + Qo () .
dwvgy/dt = Oa 00—y, + Oy (1) + Uay (Wo, Wo, 09, %oy T
dXjo/dt = ViXjo T %i-1Xj-1,0 T Vjo (1)
dyj/dt = V¥ + %je1Xj-11 T Vit ! (&) + Vi
(Wo = Wig « oy Wiy Wo=Wyp, ..., Wy 05 = 04, -
sy Omos Ko = Xier - - Xhos (Psk = Qg + Pgx (k =0, 1):

Ba* =Yg + iZy)
The first four of Eqs, (1.4) have almost-periodic solutions if and only if

(1.3)

(1.4)

4
lim -\ e gu (1) dt = (1.5)

t—oo

4]
lim -}-S et [@u* () + Ba* (Wo, W, %o, )] dt =

0
1 S

t t
lim — Se@ (fydt = lim — 5 1Baz (&) + Uox (W, Wo, 0, Yor £)] dt =
f—a0 oo 5

The first condition in (3,5) is always fulfilled under the assumptions made on the in-
commensurability of A, with the frequency spectrum of the almost-periodic func-
tions, In what follows we assume the fulfilment of the second condition in (1. 5).
since Re v; %= 0, by virtue of the Neugebauer — Bohr theorem [3, 5] the last
two of Egs, (1.4) always have almost-periodic solutions when ;4 (£) and 75 (O
are almost-periodic, As a result of transformation (1. 3) the system becomes

& = ihds + Z WEw €8 M50 + 3 wou* (1) (19

= — i+ N pEa G I+ 20T )

fme=t

e = Oy 300 G E 8 0) + 3 W ()

= Vil 4 imalimr + D WG EE M)+ X ui*(t)
i==1 ==l
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(g‘—’ﬁgp---,gn;n:np---,”ﬂm;§=C1,..., Ch)

2°., Werepresent E,, and Hy, in the form

14

=$%amn+zﬂ%w&~§£wuéwhﬂmmm
Hoy = HY €5 m 1)+ Z FQ @ )b EnEm, | Elang e planem
EQ &, t) = 2 el (@) ggu .. -Cn"
FQ& 1) = g}g o @Otk ..o
D ="(Up « - bpem); L=4L+ .o+ Lpim
() = (ky, ..., ko) ke =hy + ...+ by

Here ef(t) and fo&le) (t) are known almost-periodic functions of t. We intro-
duce the change of variables

3 — ps + p‘ Zl 2 gSl(l)Clk‘ e Cihglh ... ni:n-i-m (1- 7)
Ne = Go + 1 Z Z St - . .Cﬁﬁ&“ e ﬂ:,fmm

and we define gﬂ@) and ka;{:) such that in the transformed system the polynomi-
als corresponding to £ (Z, ) and FY (L, t) vanish, Then, starting from
the functions

. 0k
g o and RGO

for prescribed 1 and k and, next, defining

.1 k—l) h(" O W

and  Agio,...,0,0)

gsl(o,
etc, [6], for géf(’n and kg‘f(z) we obtain the equations

dgaitn/dt = (id. + 8) gl -+ Csw) ® (1.8)
dhaiy/dt = (i8; 4 8) ki, + dadcy (1)
n
Oy = ZI Unvi—1)A5 8, =8+h; O=— Z kv,
=1 i=1
Here cg‘()l) (t) and df,ﬁ)(l) (f) are known almost~periodic functions that are combina-

tions of %), (1), fuiw) (2} and of the functions g3t @, ki, (1) found earl-
ier, In the general case the expressions i, -~ § and i8, -+ 8 have nonzero
real parts, Consequently, each of Eqs. (1, 8) has one and only one almost-periodic
solution [5]. After changes (1.7) system (1, 6) takes the form

ps’ = ihgps + P'Psl(p: D, QJ) -+ (1.9)
2! 1Psi(p? P; 4, g' 1’) + ié{g}”?si* (t)
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Ds = — ihgfly + !v‘jjsl (p, P, Q» ) -
2. WPy (p, Py 4,5, t) + }1 WPa* (1)

=
9o = Op-19a-1 + WQu (P; P, q,t) + 212 HiQai (p, P, 9,5, 8) +
2 Mi B;i ®
2
G =i+ b+ 3 WEh (. P, 0,5 1) + X BR ()

Here the polynomials Py, Py, Qu; and Gj* (i = 1,2, ...) retain the struc-
ture of functions X;;
3°. We transform system (1. 9) be setting M

_ ! l
- Ps* T 2 aﬁ) t) pl'. Pn pf‘“. pnznq mi .q"z:wm (1,10)
b H
o = pa+ lgl béﬁi () PY ... PR, g g

We choose the functions a,,%)> and b4, in such a way that the polynomials play-
ing the role of P, and (), in the transformed system do not depend on time,
Then a,") and bg, " must satisfy the equations (once again we define the func-
tions in the above-mentioned order)

da(l)

* 4
a® = MYty — N©, “‘ +i6p 0 = LY () — K& (1.11)

Here My,® (1) and  Lg,® (t) are known time functions, being collections of
coefficients of polynomials P, P,,, Quy and of functions a,®), bg,(M; N,*®
and K9 are the coefficients, yet to be determined, of the polynomials in the
right hand sides of the system resulting after transformation (1. 10).
We seek almost-periodic solutions of Eqs, (1,11), Two cases are possible;
8, and 8, vanish; then the equations have almost-periodic solutions if. N g,*(
and K4, have been determined by the equalities

t—oo

: i
0 _ tnm_i_.s MP@yd, K= lim—:—SLg} (¢)de
0

Consequently, N *® and Kq "  are constants (zero, in a special case) ;
8, and §, are nonzero, We represent the functions M@ and Lg,®
as generalized Fourier series

N N
1 i im,t 3] N\ 1 imyt
MY = k}} MY ™, L§) = kz LS xe'™
£ =0

Hete MY x and Lg{’k are complex constants and my (k =0,1,.. ., N)
are arbitrary real numbers. In this case the particular solutions of system (1, 11) take
the form
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! ; ; .
o) — et Ot MO dr Ei_ (1 — emidty N3l

2:M2

1 i .
By = emidit § \'OLQ a4 o= (1 — e KQ)

)
3

i

and are almost-periodic for any N st and Kala) by virtue of the fact  that
8 +mpys%0 and 8, + my =0 (k =0, » N} (nonresonance case). We
set Nyy*0 = KO = 0 As a result of the transformauons the system becomes

p* = ihpe* + pPy* (p*, p*, p) + O (1Y) (1,12)
ﬁs*‘ = —ikS?S* + p’PSI* (p*! p*’ p) + O ("“'2)

Pa = Oa—yPu T WDay (P*, p*, p) + O (w9 .

&= ;L + ®jerGr + Gy (P, PF, 0, l§» )] *l‘lo( 15]

Py* = p* 2 Nt;lm (* %) .. (Pn*ﬁn*)z" p12n+1 Prrzxn+m

n i
Den = zz' m DB (ParBa) o™ o

D =y o Lo by v v s Dny Lomsns =+« Lomam)
=20 4 oo o+ 2l + Lpir -+ o+ Lnim

We observe that any one of the two equations in complex form is equivalent to two
equations for pure 1mag1nary roots in canonic form, If in (1, 12) we pass to the polar

coordinates p * £ and 5.* = rg%, we obtain
. o 1
re = prs 20 ADR gl phnem g 4 (1.13)

2l

Lo Ly
0, =A,+p lgo Bé?ril‘~ .10 o oMM L0 (12)

l
Po = Og-10a— + 1 1211 ngr i{x .. nnplznﬂ . 9ﬂezn+m -+ 0 (u?
L' =il + b+ 0Gy (1 6,0, § 1) + O (17)
(r=ry, .. rg0=0,...,00=01,- -.0m

Here A4 and B,® are, respectively, the real and the imaginary parts of

Let us consider the equations

.2l 2l, langy bonim .
TSZAHTJ_‘...T""‘OI ...pm =0 (l 14)
=0
3 I

@y, 2l 2, fanag gn4m
“a—lpa—1+ﬂzca11‘~~-"nnp1 ceePm =0

If system (1, 14) has real nonnegative solutions  rye%, . . ., T'pe® and real solutions
P10+ - + 1 Pme, then, by substituting them into the transformations taking (1, 1) to
(1. 13), we obtain the desired stationary solutions to within first order in . The
solutions of the second equation in system (1.13) for 6y, . . ., 8, and the bounded,
in particular, almost-periodic solutions for Cv .+ ., Lp are determined, to within
first order in ., from the equations



10686 V.G. Veretennikov and V. N, Seregin

. LN D2l 2l ! L
0, = A; + p 124 BERY L radon ™ pme (1.15)
=0
&' = ;8 + % 8ieq - pGjy (re, Bo, por G, 2)
Here 8, = 04, . . ., B, are solutions of the equations for 0,.
Let us investigate the existence and the accuracy of the solutions obtained [1, 8],
) *®
Let 7y =Ty + %, Pa = Pao ~ Tnia 2nd g]’ = C.fﬁ + Qi*’ where §j0 =
Cjo (f) are bounded solutions of the second group of equations in (1,15), Then, by
virtue of (1,13) the deviations z* (i = 1, ..., n -+ m) and {;* satisfy the
equations
&' * mem % % *
Z; = OpyTig T B kzl apar -+ uXy (@%) + n?Xi (2%, 2%, 02, p) (1.16)
h
2 = l}_‘, byz* + pZ (a*, 2%, 8, 1) + p2Zh (z*, 2%, 0, ¢, p)
=1
(x =x%, .., Ty 2% = 2%, o Lz B =0, ..., 0O,i=
1, ..,.n+mj=1,... 5k

Here X;; and Z; do not contain forms of lower than second and first order, res-
pectively;*some of the numbers 0., are zero,
Let the roots of the characteristic equation

| pag + iy k10img — Sixho | =0 (1.17)

where 8iy5y =0 for {4k and 844 =1, for i = k, nave only negat-
ive real parts, If in the right hand sides of the system we discard terms with powers of

it higher than first the solutions of the resulting system differ by an arbitrarily small
amount from the solutions of the complete system (1, 13) with a sufficiently small p .
Let us prove this, assuming that all roots of the characteristic equation are simple and
real, From the Newton diagram [9] it follows that we can represent all roots of (1. 17)
in the form A,; = p'ihy;, where 0 <C&; < 1. Let all the roots be negative
and distinct, Then, retaining the previous notation, by a linear change we transform
system (1, 16) to the form

Z* = homi* - pX ¥ (2*) + uPX,* (2%, 2%, 6,1, 1) (1.18)
¥ = Dbiz* + uZy (2%, 2%, 0, ) -+ n2Zp (2%, 2%, 6,1, )
I
we choose the Liapunov function
V=2 ¥ 2 V16
1
Here V¥, (z*) is determined by the equation

h v h 3

1 *3
32 Yoar ==
Je=1

R = =1

Function V, (z*) is sign-definite because Re v; << 0. Setting z;*= r* cosy;*,
z;* = r* cos y:+m+j and computing the derivative of function V relative
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to (1.18), we obtain

4

. : & \| * \|
V* = r*2 | pfihg; cos? yi — r*2 D1cos? Ynimes -+ k}, A

1 ; =1

A, = wr*H, (v,*, .., V:Hm r*)

Ay = prr*H, (v,*, . . ., V:+m+h, r*, t, 0, u)
As = wr*H, (v,*, ..., 'Y:+m+h7 r*, 0, 1)
Ay = pr*H, (v,*, .. ., '\’:+m+h7 r¥, 6, ¢ w

Here 0 <<eg; {1, hy; < 0, the functions p"r*™H, are various products of
u'z;*X;; and of the functions
ZaVl / aZ*lenZij*

For a sufficiently small [, V' << O on the sphere

et + ;Z}@ =r* = (w9 (1.19)
where € is an arbitrarily small positive number, Consequently, if the initial values
of z;* and z;* satisfy the conditions |z;* (1,) | << L and |z;* (t,) | < L
(L defines a domain into which the points of the surface ¥ — M do not penetrate,
where M is the lower bound of V on sphere (1,19)), then | z;* (f) | << p'~® and
| z;* (t) | << u'-® forany { in the interval (0, oco).

Analogous arguments are valid for the case of multiple and complex roots, If
among the A,; even one has a positive real part, the resulting solutions will not arbit-
rarily slightly differ from the solutions of the complete system. If among the X,;
even one has a zero real part, then the problem of the existence of stationary oscilla-
tions in system (1. 1) cannot be solved by using just terms of first order in .

2. Let us consider the resonance case, In contrast to Sect. 1l we assume that reson-
ances of the form

DAy =E

are possible for the pure imaginary roots ik, (s = 1, . . ., n) of the characterist-
ic equation of system (1.1)., We take it that the A, are commensurable with the
frequency spectrum of the almost-periodic coefficients and functions in (1,1), The
pure imaginary roots may be multiple with an arbitrary number of groups of solutions,
In addition, we assume that when X;; = 0 system (1, 1) admits of almost-periodic
solutions correct to within first order in p. For the resonance case the system's can-
onic form is

Ys = — My + Pestiorr + 2 WYy (0,200, 8) + N wew () (D
i=1 =0

Zs = MgYs + Ba12e-1 + i§1 Hizsi (Y, z,u,v,t) + .20 MilPsi ®)

Uy = Ogqlg-1 + }_‘{ WUai () 2,u, v, t) + D Wy (t)
ie= i=0
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Vi’ = Vv b %jevje1 + 2\1 WV, 2 w0, 1) + ZJO Wi ()
(50200:%0:—:0)

The general method of investigation of the system is analogous to that in Sect. 1 (also
see {107 ).
We apply a transformation analogous to that in 1° of Sect, 1 for the nonresonance
case, After passing from variables y, and z; to the complex~conjugate variables
&, and & and after the changes

o o
£ = pse2 st: £ = P gt (s=1, ... n)
and taking into account that A = Aey if B, 5= (, we obtain

Ps’ = Bsoalomy + BPg -+ O (W%, P's = BeyPemy + wPgy + (2.2)
0 (n?)

Mo = Og-iMa-y + WHoan* + O (0¥, & = v;8; + nj 38y +
uG; -+ O (p?)

Here the number of nonzero P, is determined by the multiplicity of the critical
roots and by the number of groups of solutions corresponding to the roots mentioned,
The transformations in 2° and 3 ° are carried out analogously to the nonresonance case
and system (2, 2) is reduced to

TP = gealia+ 1 2 R,(fr fo . rzi’i?ﬁ" + O (p%) (2.3)
& =wv;t;+ "‘J~1€J~ + pGu* (0, 50+ 0 (Mz)
(r"“rl?"!rzn+ma €“€1¢~~,§h, l-—-'l .,2n+m;
l"““ll i '*~+lzn+m)

in contrast to the nonresonance case the order of the subsystem corresponding to pure
imaginary roots, in system (2.3}, is not lowered.
If the equations

t
.1 2n+m
giTi-1 + B Z! Rtl ,.11 v Ponam == 0

have real 1oots Ty, . . ., Topemses then, by substituting them into the transforma-
tions taking (2. 1) to (2. 3), we obtain the desired stationary solutions which are almost-
periodic when the almost-periodic solutions for {; (j = 1, ..., k) are determin-
ed to within p from the equations

8y = vl F nabin + BGR* (re, § 1) (Fo = T1e0 - - o Tanamre) (2.4)
The method presented above for the construction of the Liapunov function for the

stationary oscillations found under the condition that the roots of the corresponding
characteristic equation have negative real parts leads to the inequalities

[T —rig | << p?=®, [ L;— Ljo | << p!® (2.5}
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where & is an arbitrarily small positive number and {j, are bounded solutions of
(2.4). From inequalities (2,5) it follows that |z — xxo | (K =1, .. ., ny) are
of order p forany I in the interval (0, oo).  The latter is not valid in the non-
resonance case ,

3. As an example let us consider the spatial oscillations of a rigid body in a
liquid (see [11], for example), the motion of whose rudders has been approximated
by almost-periodic time functions, The origin of the coordinate system Azyz con-
nected with the body is located at the point of application of the buoyancy force,
while the coordinate planes coincide with the body's planes of symmetry, The center
of mass lies on the axis A4z. The motion of a dynamically and geometrically axis~
ymmetric body in a connected system is described by the following differential equa-~
tions:

f1s v =a(p, fa — Tofe)s W' = a(p,’fs + %ofs) (3. 1)

r :"9? 43 Q"—‘a(xofs“f‘k;zfs): r'za(‘xﬁf3+k:32f°)

@ =p—1tg0(gcos @ —rsing), ¢ = secO (g cos ¢ — rsin @)
0 =gsing - rcos9
fi = mg™t (—expg® + cp cos P cos 0) + zg (g® + #2) + kg (or — wg)
fa = mg [eypy + cp (sin @ sin g — cos ¢ cos P sin 0)] —
kyy'ur -+ kag'wp — zopq
fs = mg~* {e;24® + ¢p {cos @ sin§ + sin @ cos sin 8)] +
kyy'uq ~— kay'vp — zopq
fa = mgogmyre®
fs = mgt [myp® — cgz, (sin P cos @ -~ cos 1} sin ¢ sin 6) —
zquq + zovp -+ Pypr
fo = mg~2 [myve® + cgz (sin  sin ¢ — cos P cos ¢ sin 6)] —
zour + zowp — Pxpq

75 - ’ ’ x v
a = (p,'ky — )7, sz:pz Prs U= v, ! v = Yy
-t ! Lk
w.—:-—;;‘—, p=0)x"v:“‘, q.—:())y '0‘ N r_(,)z ?}’
. . A e
11 44 'y
ky=14— (=12, ky=1+-7=, kg=1-+-5=
}“26 2,n , ‘Ix 4 JZ ’
kyg = ml + Mo pS1 Px = TP kyr o, i %
2(G— A) 26 B x* b b
‘p= pSv 2 g = pSv2° Te =TT s ]

to= 7, + bagy 0= VIETT T

Here vy, vy, v, are the projections of the velocity of the point of application of
the buoyancy force onto the connected axes A4z, 4y, Az , respectively, @y, By,
w; are the projections of the angular velocity, m is the body's mass, J, and J;
are the axial moments of inertia, A;; are the coefficients of the joining additional
masses, G is the force of gravity, A is the buoyancy force, 2, is the steady-state
value of the velocity of translation =z.* is the coordinate of the center of mass, b
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is the coordinate of the point of application of the resultant hydrodynamic forces act-
ing on the rudder, relative to axis Az,p is the liquid's density, § is the character-
istic area, ! is the characteristic dimension, ¢,, 0 are the EFuler angles. We
assume the structure of the hydrodynamic coefficients to be as follaws:

tx = Cxo t+ b3 (@ + %), mx = mePp + mp + by (aby + B6y)

IR - JU 3 r_ T 3
cy=c,a-+c, O +e, %0 -+ bt

[
mz.._ml“a—}—mz 8- m," o - cyod
o [} r_4 3 o [ ~ r 9. 3
¢,=—0c, B —c 8 —c, ™ — b3, my=m, B+ m, 0y + m, %o +-¢f

v LW
a = aretg |——~/, B:arcsm*;;’

8, = AP sin (@Pr 4 61 - AP sin (@Dt - 0Py k=1, 2)

Here « and B are the attack and slip angles, &y are the rudder deflection angles,
or? and ©r® are incommensurable frequencies.
We introduce

Ty = uze*, 4,8 = }LAI{*(l), Ak(g) = LLA?:‘(Q), me® = P-mx*m
and we seek the stationary solutions of (3,1) in the form

u = ug -t pry, 5 = U

Here ug = (cp/ cxo)’/ 2 js the steady-state value of the velocity of the vertical deep-
ening, z;=v,w,p,q, 7, ¢, P, 0 for i=2,3,..., 9 , respectively, Seiting
me™ = e Feghys [ ¢p  and  m,7 = o%p, [ky', we obtain, in the characteristic
equation of the system for x; , two pairs of multiple pure imaginary roots with two
groups of solutions, three zero roots with three groups of solutions, and two distinet
negative roots,

Let us determine the stationary solutions of such a system from the terms of first
order in p , Making transformations analogous to those in Sect, 2 for the resonance
case, we obtain

ri=pR; 0y, (=2,3,5..., 9)

Cl. = allz:)l + HGII (Y‘, Z;lv Czh t) + 0 (P-z)

Lo = agls 1+ WGy (ry Ly G O + O (W%

Ry == Dggarey Ry = Dygorg

R == Deogr's + Densrs, Be = Deggrs + Diosrs

Ry == Dagirs -+ Drze {75y — Tols)

Ry = —Dggyrs + Deosry,  Ro = —Dyosrs -+ Daosro

Here D;j; are known constant coefficients and G;; and Gy are known polynom-
ials with almost-periodic coefficients, Solving the amplitude equations and finding
the stationary solutions for z; cormrect within p, we obtain, for example, for =,

2 M@ 2
Y [ @ °°56§a)} 2 [B‘*) ) sin 8@ +
2 =1

[e 23 Y
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F&
21 .

B () Qi) cos & + (A ) Haor + W) sin 8{% 4

2

G
(A 6 Q5 ~ @ )cos 6&“’]

Here M, H®, (

@) g@, F®, ¢

sosr Hogyr Fay's Gy are constants, being combinations of the

original coefficients, A(f) and B(#) are the solutions of the adjoint system, having
the form

2u8xme““'

A=
@ 2uy + pag (1 — ety

Tyo == 24 {0)

|3
2
B(t)=1c,exp [aut—i—p-—sﬁ— S A dt]
s
0
(ann <0, a4 <0, Oia) = wia)i + eia), 6%’7‘) == m(za)t 4+ Gé“))

By choosing the hydrodynamic coefficients we can satisfy the existence conditions for
the stationary solutions from terms of first order in p. With prescribed numerical
values we have compared the analytic solutions found with the solutions of system
(3.1), obtained by numerical methods, The calculation results practically coincide,
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