ON THE INVESTIGATION OF OSCLLLATIONS OF QUASILINEAR SYSTEMS WITH ALMOST-PERIODIC COEFFICIENTS

PMM Vol. 43, No.6, 1979, pp. 980 - 991
V. G. VERETENNIKOV and V. N. SEREGIN
(Moscow)
(Received March 23, 1979)
A method is developed for investigating the oscillations of systems with almostperiodic coefficients, based on Kamenkov's ideas [1] on the construction of stationary solutions of systems with periodic coefficients and on the separation of motions. In contrast to [1] it is assumed that under the vanishing of a sman parameter μ the system's characteristic equation has, besides n pairs of pure imaginary roots, m zero roots and h roots with negative real parts. Nonresonance and resonance cases are considered. Conditions are obtained for the existence of stationary solutions with respect to terms of first order in the small parameter. An example is presented.

1. We examine the problem of the existence and the structure of the solutions, stationary in the sense of [1], of a system whose motion obeys the equations ($p_{i k}$ are constant coefficients and μ is a small positive parameter)

$$
\begin{align*}
& x_{i}^{*}=\sum_{k=1}^{n_{1}} p_{i k} x_{k}+\sum_{j=1}^{\infty} \mu^{j} X_{i j}(x, t)+\sum_{j=0}^{\infty} \mu^{j} f_{i j}(t) \tag{1,1}\\
& \left(x=x_{1}, \ldots, x_{n_{1}} ; i=1, \ldots, n_{1} ; n_{1}=2 n+m+h\right)
\end{align*}
$$

Here the right hand sides are convergent series in parameter μ in the domain of variation being studied of the variables $x_{1}, \ldots, x_{n_{1}}$ and of the parameter: $X_{i j}(j=1$, $2, . .$.$) are polynomials of any finite order with coefficients almost-periodic in t$, vanishing for $x_{1}=\ldots=x_{n_{1}}=0 ; f_{i j}(t)(j=0,1,2, \ldots)$ are almostperiodic time functions. We prepresent the almost-periodic functions $X_{i j}$ and $f_{i j}$ by finite Fourier series with arbitrary frequency spectrum (generalized Fourier series). Any quasilinear system whose nonlinear terms have the structure of $X_{i j}$, while the coefficients of the linear terms are periodic functions of one and the same period, can be brought to form (1.1) [2]. Various cases wherein systems whose linear terms have almost-periodic coefficients are reducible to form (1.1) are known as well [3].

We assume that the characteristic equation $\left|p_{i k}-\delta_{i k} \rho\right|=0$ has n pairs of pure imaginary roots, m zero roots, and h roots with negative real parts. The number of groups of solutions corresponding to the zero roots is assumed arbitrary. At first we assume that the condition

$$
\sum_{s=1}^{n} k_{s} \lambda_{s} \neq E
$$

for the absence of resonances is fulfilled for the pure imaginary roots $\pm i \lambda_{s}(s=1$, . .., n) . Here k_{s} and E are positive and negative integers, including zero;
the k_{s} satisfy the condition

$$
0<\sum_{s}\left|k_{s}\right| \leqslant K
$$

The number K is determined by the index of the highest form occurring in the $X_{i 1}$. The eigenvalues λ_{s} are taken as being incommensurable with the frequency spectrum of the almost-periodic coefficients and functions occurring in the right hand sides of (1.1) (nonresonance case), i. e. , relations analogous to those presented above are fulfilled for the frequencies λ_{s} and the frequency spectrum of the almost-periodic coefficients of functions $X_{i 1}$ and the functions $f_{i 0}$ and $f_{i 1}$. The roots with negative real parts may be both simple as well as multipie with an arbitrary number of groups of solutions.

Under the assumptions made, system (1.1) is reduced to

$$
\begin{align*}
y_{s}^{*} & =-\lambda_{s} z_{s}+\sum_{i=1}^{\infty} \mu^{i} Y_{s i}(y, z, u, v, t)+\sum_{i=0}^{\infty} \mu^{i} \varphi_{s i}(t) \tag{1.2}\\
z_{s}^{*} & =\lambda_{s} y_{s}+\sum_{i=1}^{\infty} \mu^{i} Z_{s i}(y, z, u, v, t)+\sum_{i=0}^{\infty} \mu^{i} \psi_{s i}(t) \\
u_{\alpha} \cdot & =\sigma_{\alpha-1} u_{\alpha-1}+\sum_{i=1}^{\infty} \mu^{i} U_{\alpha i}(y, z, u, v, t)+\sum_{i=0}^{\infty} \mu^{i} \theta_{\alpha i}(t) \\
v_{j}^{*} & =v_{j} v_{j}+x_{j-1} v_{j-1}+\sum_{i=1}^{\infty} \mu^{i} V_{j i}(y, z, u, v, t)+\sum_{i=0}^{\infty} \mu^{i} \gamma_{j i}(t) \\
(y & =y_{1}, \ldots, y_{n} ; z=z_{1}, \ldots, z_{n} ; u=u_{1}, \ldots, u_{m} ; v=v_{1}, \ldots \\
, \quad v_{h} ; s & \left.=1, \ldots, n ; \alpha=1, \ldots, m ; j=1, \ldots, h ; \sigma_{0}=x_{0}=0\right)
\end{align*}
$$

by a nonsingular linear transformation [4]. Here y_{s}, z_{s} and u_{α} are critical variables, v_{j} are the variables of the adjoint system; the functions $Y_{s i}, Z_{s i}, U_{\alpha i}$ and $Y_{j i}(i=1,2, \ldots)$ have a structure analogous to that of $X_{i j}$ and are polynomials of arbitrary finite degree in y, z, u and v, vanishing when $y=z=$ $u=v=0$, with coefficients almost-periodic in t. The number different from zero $\sigma_{\alpha-1}$ and x_{j-1} is determined by the multiplicity of the zero roots and of the roots with negative real parts and by the number of groups of solutions corresponding to these roots.

To solve the problem posed we show that nonautonomous transformations with al-most-periodic coefficients exist leading (1.2) to a form when:
functions corresponding $\mathrm{t} \cap \varphi_{s i}(t), \psi_{s i}(t), \theta_{\alpha_{i}}(t)$ and $\gamma_{j i}(t)(i=0,1)$ in the original system are absent in the transformed system;
terms of first order in μ, depending on the noncritical variables v_{1}, \ldots, v_{h} are absent in the critical system;
in the critical system, up to μ to the first power, inclusive, the coefficients of polynomials are independent of time.

From the system thus transformed we obtain the equations for the stationary amplitudes and we construct the desired stationary solutions. By investigating the approximate solutions found for stability and by estimating the magnitudes of their deviations from the solutions of the complete system, we determine the conditions for the existence of stationary oscillations from the first-order terms in parameter μ.
1°. Setting $\xi_{s}{ }^{*}=y_{s}+i z_{s}$ and $\xi_{s}^{*}=y_{s}-i z_{s} \quad$ in (1.2), we pass to the complex form of writing the subsystem with pure imaginary roots and we transform the resulting system by the changes

$$
\begin{aligned}
& \xi_{s}^{*}=\xi_{s}+W_{s 0}(t)+\mu W_{s 1}(t), \quad u_{\alpha}=\eta_{\alpha}+\omega_{\alpha_{0}}(t)+\mu \omega_{\alpha_{1}}(t) \\
& v_{j}=\zeta_{j}+\chi_{j 0}(t)+\mu \chi_{j 1}(t)
\end{aligned}
$$

Here $W_{s 0}, W_{s 1}, \omega_{\alpha 0}, \omega_{\alpha_{1}}, \chi_{j 0}$ and $\chi_{j 1}$ are defined such that the functions corresponding to $\varphi_{s 0}{ }^{*}, \varphi_{s 1}{ }^{*}, \theta_{\alpha 0}, \theta_{\alpha 1}, \gamma_{j 0}$ and $\gamma_{j 1}$ of the original system vanish in the transformed system. For this it is sufficient that $W_{s 0}, W_{s 1}, \omega_{\alpha 0}, \omega_{\alpha_{1}}, \chi_{j 0}$ and $\chi_{j_{1}}$ satisfy the equations

$$
\begin{aligned}
& d W_{s 0} / d t=i \lambda_{s} W_{s 0}+\varphi_{s 0} *(t) \\
& d W_{s 1} / d t=i \lambda_{s} W_{s 1}+\varphi_{s 1} *(t)+\Xi_{s 1} *\left(W_{0}, \bar{W}_{0}, \omega_{0}, \chi_{0}, t\right) \\
& d \omega_{\alpha 0} / d t=\sigma_{\alpha-1} \omega_{\alpha-1,0}+\theta_{\alpha 0}(t) \\
& d \omega_{\alpha 1} / d t=\sigma_{\alpha-1} \omega_{\alpha-1,1}+\theta_{\alpha 1}(t)+U_{\alpha_{1}}\left(W_{0}, \bar{W}_{0}, \omega_{0}, \chi_{0}, t\right) \\
& d \chi_{j 0} / d t=v_{j} \chi_{j 0}+\chi_{j-1} \chi_{j-1,0}+\gamma_{j 0}(t) \\
& d \chi_{j 1} / d t=v_{j} \chi_{j 1}+\chi_{j-1} \chi_{j-1}, \gamma_{j 1}(t)+V_{j 1} \\
& \left(W_{0}=W_{10}, \ldots, W_{n 0} ; \bar{W}_{0}=\bar{W}_{10}, \ldots, \bar{W}_{n 0} ; \omega_{0}=\omega_{10},\right. \\
& \ldots, \omega_{m 0} ; \chi_{0}=\chi_{10}, \cdots, \chi_{h 0} ; \varphi_{s k}^{*}=\varphi_{s k}+i \psi_{s k}(k=0,1) ; \\
& \left.\Xi_{s 1}{ }^{*}=Y_{s 1}+i Z_{s 1}\right)
\end{aligned}
$$

The first four of Eqs. (1.4) have almost-periodic solutions if and only if

$$
\begin{align*}
& \lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} e^{-i \lambda_{s} t} \varphi_{s 0} *(t) d t= \tag{1.5}\\
& \lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} e^{-i \lambda_{s} t}\left[\varphi_{s 1} *(t)+\Xi_{s 1} *\left(W_{0}, \widetilde{W}_{0}, \chi_{0}, t\right)\right] d t=0
\end{align*}
$$

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} \theta_{\alpha 0}(t) d t=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t}\left[\theta_{\alpha 1}(t)+U_{\alpha 1}\left(W_{0}, W_{0}, \omega_{0}, \chi_{0}, t\right)\right] d t=0
$$

The first condition in (1.5) is always fulfilled under the assumptions made on the incommensurability of λ_{s} with the frequency spectrum of the almost-periodic functions. In what follows we assume the fulfilment of the second condition in (1.5).

Since $\operatorname{Re} v_{j} \neq 0$, by virtue of the Neugebauer - Bohr theorem [3,5] the last two of Eqs. (1.4) always have almost-periodic solutions when $\gamma_{j 0}(t)$ and $\gamma_{i 1}(t)$ are almost-periodic. As a result of transformation (1.3) the system becomes

$$
\begin{align*}
& \xi_{\phi}=i \lambda_{s} \xi_{s}+\sum_{i=1}^{\infty} \mu^{i} \Xi_{s i}(\xi, \bar{\xi}, \eta, \zeta, t)+\sum_{i=2}^{\infty} \mu^{i} \varphi_{s i}^{*}(t) \tag{1.6}\\
& \xi_{*}=-i \lambda_{s} \bar{\xi}_{s}+\sum_{i=1}^{\infty} \mu^{i} \bar{\Xi}_{8 i}(\xi, \bar{\xi}, \eta, \xi, t)+\sum_{i=2}^{\infty} \mu^{i} \bar{\Psi}_{s i}^{*}(t) \\
& \eta_{\alpha}^{*}=\sigma_{\alpha-1} \eta_{\alpha-1}+\sum_{i=1}^{\infty} \mu^{i} H_{\alpha i}(\xi, \bar{\xi}, \eta, \zeta, t)+\sum_{i=2}^{\infty} \mu^{i} \theta_{\alpha i}^{*}(t) \\
& \zeta_{j}^{*}=v_{j} \bar{\zeta}_{j}+x_{j-1} \zeta_{j-1}+\sum_{i=1}^{\infty} \mu^{i} G_{j i}(\xi, \bar{\xi}, \eta, \zeta, t)+\sum_{i=2}^{\infty} \mu^{i} \gamma_{j i}^{*}(t)
\end{align*}
$$

$$
\left(\xi=\xi_{1}, \ldots, \xi_{n} ; \eta=\eta_{1}, \ldots, \eta_{m} ; \zeta=\zeta_{1}, \ldots, \zeta_{h}\right)
$$

2°. We represent $\Xi_{s 1}$ and $H_{\alpha 1}$ in the form

$$
\begin{aligned}
& \Xi_{s 1}=\Xi_{s 1}^{(0)}(\xi, \bar{\xi}, \eta, t)+\sum_{l \geqslant 0} E_{s 1}^{(l)}(\zeta, t) \xi_{1}^{l_{1}} \ldots \xi_{n}^{l} \bar{\xi}_{1}^{l} n_{n+1} \ldots \bar{\xi}_{n}^{l} \eta_{1}^{l_{2}}{ }_{2 n+1} \ldots \eta_{m}^{l_{2 n+m}} \\
& H_{\alpha 1}=H_{\alpha 1}^{(0)}(\xi, \bar{\xi}, \eta, t)+\sum_{l \geqslant 0} F_{\alpha 1}^{(l)}(\zeta, t) \xi_{1}^{l_{1}} \ldots \xi_{n}^{l} \xi_{1}^{l} \bar{\xi}_{1}^{l} n+1 \ldots \bar{\xi}_{n}^{l} \eta_{1}^{l} \eta_{1}^{l_{2 n+1}} \ldots \eta_{m}^{l_{2 n+m}} \\
& E_{s 1}^{(l)}(\xi, t)=\sum_{k \geqslant 1} e_{s 1(l)}^{(k)}(t) \zeta_{1}^{k_{3}} \ldots \xi_{h}^{k_{h}} \\
& F_{\alpha 1}^{(l)}(\xi, t)=\sum_{k \geqslant 1} f_{\alpha 1(l)}^{(k)}(t) \xi_{1}^{k_{1}} \ldots \xi_{h}^{k_{h}} \\
& (l)=\left(l_{1}, \ldots, l_{2 n+m}\right) ; l=l_{1}+\ldots+l_{2 n+m} \\
& (k)=\left(k_{1}, \ldots, k_{h}\right) ; k=k_{1}+\ldots+k_{h}
\end{aligned}
$$

Here $e_{s 1(l)}^{(k)}(t)$ and $f_{\alpha 1(l)}^{(k)}(t)$ are known almost-periodic functions of t. We introm duce the change of variables

$$
\begin{align*}
& \xi_{s}=p_{\mathrm{s}}+\mu \sum_{l \geqslant 0} \sum_{k \geqslant 1} g_{s 1(l)}^{(k)} \xi_{1}^{k_{1}} \ldots \zeta_{h}^{k_{h} \xi_{1}^{l_{1}} \ldots \eta_{m}^{l_{2 n+m}}} \tag{1.7}\\
& \eta_{\alpha}=q_{\alpha}+\mu \sum_{l \geqslant 0} \sum_{k \geqslant 1} h_{\alpha 1(l) \xi_{1}^{(k)} \xi_{1}^{k_{1}} \ldots \xi_{h}^{k_{h} \xi_{1} l_{1}} \ldots \eta_{m}^{t_{2 n+m}}}
\end{align*}
$$

and we define $g_{s i(l)}^{(k)}$ and $h_{\alpha 1(i)}^{(k)}$ such that in the transformed system the polynomials corresponding to $E_{\mathbf{s i}}^{(l)}(\zeta, t)$ and $F_{\alpha 1}^{(l)}(\zeta, t)$ vanish. Then, startíng from the functions

$$
g_{s 1(0, \ldots, 0, l)}^{(0, \ldots, 0, k)} \quad \text { and } \quad h_{\alpha 1(0, \ldots, 0, l)}^{(0, \ldots, 0, k)}
$$

for prescribed l and k and, next, defining

$$
g_{s 1(0, \ldots, 0, l)}^{(0, \ldots, 1, k-1)} \quad \text { and } \quad h_{\alpha 1(0, \ldots, 0, l)}^{(1, \ldots, 1, k-1)}
$$

etc. $[6]$, for $g_{s 1(l)}^{(k)}$ and $h_{\alpha 1(l)}^{(k)}$ we obtain the equations

$$
\begin{align*}
& d g_{s 1(l)}^{(k)} / d t=\left(i \delta_{1}+\delta\right) g_{11(l)}^{(f)}+c_{s 1(l)}^{(k)}(t) \tag{1.8}\\
& d h_{\alpha 1(l)}^{(k)} / d t=\left(i \delta_{2}+\delta\right) h_{\alpha 1(l)}^{(k)}+d_{a 1(!)}^{(k)}(t) \\
& \delta_{2}=\sum_{j=1}^{n}\left(l_{n+}-l_{j}\right) \lambda_{j} ; \quad \delta_{1}=\delta_{2}+\lambda_{s} ; \quad \delta=-\sum_{i=1}^{h} k_{i} v_{i}
\end{align*}
$$

Here $c_{s 1(l)}^{(k)}(t)$ and $d_{\alpha 1(l)}^{(k)}(t)$ are known almost-periodic functions that are combinations of $\quad e_{s 1(l)}^{(k)}(t), f_{\alpha 1(l)}^{(k)}(t)$ and of the functions $g_{\mathrm{sil}(l)}^{(k)}(t), h_{\alpha 1(l)}^{(k)}(t)$ found earlier. In the general case the expressions $i \delta_{1}+\delta$ and $i \delta_{2}+\delta$ have nonzero real parts. Consequently, each of Eqs. (1.8) has one and only one almost-periodic solution [5]. After changes (1.7) system (1.6) takes the form

$$
\begin{align*}
& p_{s}^{*}=i \lambda_{\mathrm{s}} p_{\mathrm{s}}+\mu P_{\mathrm{s} 1}(p, \bar{p}, q, t)+ \tag{1.9}\\
& \sum_{i=2}^{\infty} \mu^{i} P_{s i}(p, \bar{p}, q, \zeta, t)+\sum_{i=2}^{\infty} \mu^{i} \varphi_{s i} *(t)
\end{align*}
$$

$$
\begin{aligned}
& \bar{p}_{s}^{*}=-i \lambda_{s} \bar{p}_{s}+\mu \bar{P}_{s i}(p, \bar{p}, q, t)+ \\
& \quad \sum_{i=2}^{\infty} \mu^{i} \bar{P}_{s i}\left(p, \bar{p}_{,}, q, \zeta, t\right)+\sum_{i=2}^{\infty} \mu^{i} \bar{\varphi}_{s i}^{*}(t) \\
& q_{\alpha}^{*}= \sigma_{\alpha-1} q_{\alpha-1}+\mu Q_{\alpha 1}(p, \bar{p}, q, t)+\sum_{i=2}^{\infty} \mu^{i} Q_{\alpha i}(p, \bar{p}, q, \zeta, t)+ \\
& \sum_{i=2}^{\infty} \mu^{i} \theta_{\alpha i}^{*}(t) \\
& \zeta_{j}^{*}= v_{j} \zeta_{j}+x_{j-1} \zeta_{j-1}+\sum_{i=1}^{\infty} \mu^{i} G_{j i}^{*}(p, \bar{p}, q, \zeta, t)+\sum_{i=1}^{\infty} \mu^{i} \gamma_{j i}^{*}(t)
\end{aligned}
$$

Here the polynomials $P_{s i}, \bar{P}_{s i}, Q_{\alpha i}$ and $G_{j i}{ }^{*}(i=1,2, \ldots)$ retain the structure of functions $X_{i j}$.
3°. We transform system (1.9) be setting [7]

$$
\begin{align*}
& p_{s}=p_{s}^{*}+\mu \sum_{l \geqslant 1} a_{s 1}^{(l)}(t) p_{1}^{l_{1}} \ldots p_{n}^{l_{n} \bar{p}_{1}^{l_{n+1}} \ldots \bar{p}_{n}^{l_{2 n}} q_{1}^{l_{2 n+1}} \ldots q_{m}^{l_{2 n+m}}} \tag{1,10}\\
& q_{\alpha}=\rho_{\alpha}+\mu \sum_{l \geqslant 1} b_{\alpha 1}^{(l)}(t) p_{1}^{l_{1}} \ldots p_{n}^{l_{n} \bar{p}_{1}^{l}{ }^{n+1} \ldots \bar{p}_{n}^{l_{2 n}} q_{1}^{l_{2 n+1}} \ldots q_{m}^{l_{2 n+m}}}
\end{align*}
$$

We choose the functions $a_{s 1}{ }^{(l)}$ and $b_{a 1}{ }^{(l)}$ in such a way that the polynomials playing the role of $P_{s_{1}}$ and $Q_{\alpha_{1}}$ in the transformed system do not depend on time. Then $a_{s 1}{ }^{(l)}$ and $b_{\alpha 1}{ }^{(l)}$ must satisfy the equations (once again we define the functions in the above-mentioned order)

$$
\begin{equation*}
\frac{d a_{11}^{(l)}}{d t}+i \delta_{1} a_{s 1}^{(l)}=M_{s 1}^{(l)}(t)-N_{s_{1}}^{*(l)}, \frac{d b_{\alpha 1}^{(l)}}{d t}+i \delta_{2} b_{\alpha 1}^{(l)}=L_{\alpha 1}^{(l)}(t)-K_{\alpha 1}^{(l)} \tag{1.11}
\end{equation*}
$$

Here $M_{s_{1}}{ }^{(l)}(t)$ and $L_{\alpha_{1}}{ }^{(l)}(t)$ are known time functions, being collections of coefficients of polynomials $P_{s 1}, \bar{P}_{s 1}, Q_{\alpha_{1}}$ and of functions $a_{s 1}{ }^{(l)}, b_{\alpha_{1}}{ }^{(l)} ; N_{s 1}{ }^{*}(l)$ and $K_{a_{1}}{ }^{(l)}$ are the coefficients, yet to be determined, of the polynomials in the right hand sides of the system resulting after transformation (1.10).

We seek almost-periodic solutions of Eqs. (1.11). Two cases are possible:
δ_{1} and δ_{2} vanish; then the equations have almost-periodic solutions if. $N_{s 1}{ }^{*}(l)$ and $K_{\alpha_{1}}{ }^{(l)}$ have been determined by the equalities

$$
N_{s 1}^{*(l)}=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} M_{s 1}^{(l)}(t) d t, \quad K_{\alpha 1}^{(l)}=\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} L_{\alpha 1}^{(l)}(t) d t
$$

Consequently, $N_{s 1}{ }^{*(l)}$ and $K_{\alpha_{1}}{ }^{(l)}$ are constants (zero, in a special case);
δ_{1} and δ_{2} are nonzero. We represent the functions $M_{s 1}{ }^{(l)}$. and $L_{\alpha_{1}}{ }^{(l)}$ as generalized Fourier series

$$
M_{s 1}^{(l)}=\sum_{k=1}^{N} M_{s 1, k}^{(l)} e^{i m_{k} t}, L_{\alpha 1}^{(l)}=\sum_{k=0}^{N} L_{\alpha 1, k}^{(l)} e^{i m_{k} t}
$$

Here $M_{s 1, k}^{(l)}$ and $L_{\alpha 1, k}^{(l)}$ are complex constants and $m_{k}(k=0,1, \ldots, N)$ are arbitrary real numbers. In this case the particular solutions of system (1.11) take the form

$$
\begin{aligned}
& a_{s 1}^{(l)}=e^{-i \delta_{1} t} \sum_{k=0}^{N} \int_{0}^{t} e^{i\left(\delta_{1}+m_{k}\right) t} M_{\Delta 1, k}^{(l)} d t+\frac{i}{\delta_{1}}\left(1-e^{-i \delta_{1} t}\right) N_{s 1}^{*(l)} \\
& b_{\alpha 1}^{(l)}=e^{-i \delta_{2} t} \sum_{k=0}^{N} \int_{0}^{t} e^{i\left(\delta_{2}+m_{k}\right) t} L_{\alpha 1, k}^{(l)} d t+\frac{i}{\delta_{2}}\left(1-e^{-i \delta_{2} t}\right) K_{\alpha 1}^{(l)}
\end{aligned}
$$

and are almost-periodic for any $N_{s 1}{ }^{*(l)}$ and $K_{\alpha_{1}}{ }^{(l)}$ by virtue of the fact that $\delta_{1}+m_{k} \neq 0$ and $\delta_{2}+m_{k} \neq 0(k=0, \ldots, N)$ (nonresonance case). We set $N_{s 1}{ }^{*}(l)=K_{\alpha_{1}}{ }^{(l)}=0$. As a result of the transformations the system becomes

$$
\begin{align*}
& p_{s}^{* *}=i \lambda_{8} p_{s}^{*}+\mu P_{s 1}^{*}\left(p^{*}, \bar{p}^{*}, \rho\right)+O\left(\mu^{2}\right) \tag{1.12}\\
& \vec{p}_{s}^{*}=-i \lambda_{s} \bar{p}_{s}^{*}+\mu \bar{P}_{s 1}^{*}\left(p^{*}, \bar{p}^{*}, \rho\right)+O\left(\mu^{2}\right) \\
& \rho_{\alpha}^{*}=\sigma_{\alpha-1} \rho_{\alpha-1}+\mu D_{\alpha_{1}}\left(p^{*}, \bar{p}^{*}, \rho\right)+O\left(\mu^{2}\right) \\
& \zeta_{j}^{*}=v_{j} \zeta_{j}+x_{j-1} \zeta_{j-1}+\mu G_{j 1}\left(p^{*}, \bar{p}^{*}, \rho, \zeta_{i} t\right)+O\left(\mu^{2}\right) \\
& p_{s 1}^{*}=p_{s}{ }^{*} \sum_{l \geqslant 0} N_{s 1}^{*(l)}\left(p_{1}{ }^{*} \bar{p}_{1}^{*}\right)^{l_{1}} \ldots\left(p_{n}^{*} \bar{p}_{n}^{*}\right)^{l_{n}} \rho_{1}^{l_{2 n+1}} \ldots \rho_{m}^{l_{2 n+m}} \\
& D_{\alpha_{1}}=\sum_{l \geqslant 1} K_{\alpha 1}^{(l)}\left(p_{1}^{*} \bar{p}_{1}^{*}\right)^{l_{1}} \ldots\left(p_{n}^{*} \bar{p}_{n}^{*}\right)^{l} \rho_{1}^{l_{2 n+1}} \ldots \rho_{m}^{l_{2 n+m}} \\
& (l) \equiv\left(l_{1}, \ldots, l_{n}, l_{1}, \ldots, l_{n}, l_{2 n+1}, \ldots, l_{2 n+m}\right) \\
& l=2 l_{1}+\ldots+2 l_{n}+l_{2 n+1}+\ldots+l_{2 n+m}
\end{align*}
$$

We observe that any one of the two equations in complex form is equivalent to two equations for pure imaginary roots in canonic form. If in (1.12) we pass to the polar coordinates $p_{s}^{*}=r_{s} e^{i \theta_{s}}$ and $\bar{p}_{s}{ }^{*}=r_{s} e^{i \theta_{s}}$, we obtain

$$
\begin{align*}
& r_{s}^{*}=\mu r_{s} \sum_{l \geqslant 0} A_{s 1}^{(l)} r_{1}^{2 l_{1}} \ldots r_{n}^{2 l_{n}} \rho_{1}^{l_{2 n+1}} \ldots \rho_{m}^{l_{2 n+m}}+O\left(\mu^{2}\right) \tag{1.13}\\
& \theta_{s}^{*}=\lambda_{s}+\mu \sum_{l \geqslant 0} B_{s 1}^{(l)} r_{1}^{2 l_{1}} \ldots r_{n}^{2 l} \rho_{1}^{l_{2 n+1}} \ldots \rho_{m}^{l_{2 n+m}}+O\left(\mu^{2}\right) \\
& \rho_{\alpha}^{*}=\sigma_{\alpha-1} \rho_{\alpha-1}+\mu \sum_{l \geqslant 1} C_{\alpha 1}^{(l)} r_{1}^{2 l_{1}} \ldots r_{n}^{2 l_{n} \rho_{1}^{l_{2 n+1}} \ldots \rho_{m}^{l_{2 n+m}}+O\left(\mu^{2}\right)} \\
& \zeta_{j}^{*}=v_{j} \zeta_{j}+x_{j-1} \zeta_{j-1}+\mu G_{j_{1}}(r, \theta, \rho, \zeta, t)+O\left(\mu^{2}\right) \\
& \left(r=r_{1}, \ldots, r_{n} ; \theta=\theta_{1}, \ldots, \theta_{n} ; \rho=\rho_{1}, \ldots, \rho_{m}\right)
\end{align*}
$$

Herc $A_{s 1}{ }^{(l)}$ and $B_{s 1}{ }^{(l)}$ are, respectively, the real and the imaginary parts of $N_{81}{ }^{*}(l)$.

Let us consider the equations

$$
\begin{align*}
& r_{s} \sum_{l \geqslant 0} A_{i 1}^{(l)} r_{1}^{2 l_{1}} \ldots r_{n}^{2 n_{n}} \rho_{1}^{l_{2 n+1}} \ldots \rho_{m}^{l_{2 n+m}}=0 \tag{1.14}\\
& \sigma_{\alpha-1} \rho_{\alpha-1}+\mu \sum_{l \geqslant 1} C_{\alpha 1}^{(l)} r_{1}^{2 l_{1}} \ldots r_{n}^{2 l} \rho_{1}^{l_{2 n+1}} \ldots \rho_{m}^{l_{2 n+m}}=0
\end{align*}
$$

If system (1.14) has real nonnegative solutions $r_{10}{ }^{2}, \ldots, r_{n 0}{ }^{2}$ and real solutions $\rho_{10}, \ldots, \rho_{m 0}$, then, by substituting them into the transformations taking (1.1) to (1.13), we obtain the desired stationary solutions to within first order in μ. The solutions of the second equation in system (1.13) for $\theta_{1}, \ldots, \theta_{n}$ and the bounded, in particular, almost-periodic solutions for $\zeta_{1}, \ldots, \zeta_{h}$ are determined, to within first order in μ, from the equations

$$
\begin{align*}
& \theta_{s}^{*}=\lambda_{s}+\mu \sum_{i \geqslant 0} B_{s 1}^{(l)} r_{10}^{2 l_{1}} \ldots r_{n 0}^{2 l} \rho_{10}^{l_{2 n+1}} \ldots \rho_{m 0}^{l_{2 n+m}} \tag{1.15}\\
& \zeta_{j}^{*}=v_{j} \zeta_{j}+x_{j-1} \zeta_{j-1}+\mu G_{j 1}\left(r_{0}, \theta_{0}, \rho_{0}, \zeta, t\right)
\end{align*}
$$

Here $\theta_{0}=\theta_{10}, \ldots, \theta_{n 0}$ are solutions of the equations for θ_{s}.
Let us investigate the existence and the accuracy of the solutions obtained [1,8]. Let $r_{s}=r_{s 0}+x_{s}^{*}, \rho_{\alpha}=\rho_{\alpha 0}+x_{n+\alpha}^{*}$ and $\zeta_{j}=\zeta_{j 0}+\zeta_{j}^{*}$, where $\zeta_{j 0}=$ $\zeta_{j 0}(t)$ are bounded solutions of the second group of equations in (1.15). Then, by virtue of (1.13) the deviations $x_{i}^{*}(i=1, \ldots, n+m)$ and $\zeta_{j}{ }^{*}$ satisfy the equations

$$
\begin{align*}
& x_{i}^{*}=\sigma_{i-1} x_{i-1}^{*}+\mu \sum_{k=1}^{n+m} a_{i k} x_{k}^{*}+\mu X_{i 1}^{*}\left(x^{*}\right)+\mu^{2} X_{i 2}^{*}\left(x^{*}, z^{*}, \theta t, \mu\right) \tag{1.16}\\
& z_{j}^{*}=\sum_{l=1}^{n} b_{j l} z_{l}^{*}+\mu Z_{j 1}^{*}\left(x^{*}, z^{*}, \theta, t\right)+\mu^{2} Z_{j 2}^{*}\left(x^{*}, z^{*}, \theta, t, \mu\right) \\
&\left(x=x_{1}^{*}, \ldots, x_{n+m}^{*} ; z^{*}=z_{1}^{*}, \ldots, z_{h}^{*} ; \theta=\theta_{1}, \ldots, \theta_{n} ; i=\right. \\
&\quad 1, \ldots, n+m ; j=1, \ldots, h)
\end{align*}
$$

Here $X_{i 1}$ and $Z_{j 1}$ do not contain forms of lower than second and first order, respectively; ${ }^{\text {is }}$, ${ }^{2}$,

Let the roots of the characteristic equation

$$
\begin{equation*}
\left|\mu a_{i k}+\delta_{i-1, k-1}^{\prime} \sigma_{i-1}-\delta_{i k} \lambda_{0}\right|=0 \tag{1.17}
\end{equation*}
$$

where $\delta_{i-1, k-1}^{\prime}=0$ for $i \neq k$ and $\delta_{i-1, k-1}^{\prime}=1$, for $i=k$, have only negative real parts. If in the right hand sides of the system we discard terms with powers of μ higher than first the solutions of the resulting system differ by an arbitrarily small amount from the solutions of the complete system (1.13) with a sufficiently small μ. Let us prove this, assuming that all roots of the characteristic equation are simple and real. From the Newton diagram [9] it follows that we can represent all roots of (1.17) in the form $\lambda_{0 i}=\mu^{\varepsilon_{i}} h_{0 i}$, where $0<\varepsilon_{i} \leqslant 1$. Let all the roots be negative and distinct. Then, retaining the previous notation, by a linear change we transform system (1.16) to the form

$$
\begin{gather*}
x_{i}^{*}=\lambda_{01} x_{i}^{*}+\mu X_{i 1}^{*}\left(x^{*}\right)+\mu^{2} X_{i 2}^{*}\left(x^{*}, z^{*}, \theta, t, \mu\right) \tag{1.18}\\
z_{j}^{*}=\sum_{i} b_{j l} z_{l}^{*}+\mu Z_{j 1}^{*}\left(z^{*}, x^{*}, \theta, t\right)+\mu^{2} Z_{j 2}^{*}\left(x^{*}, z^{*}, \theta, t, \mu\right)
\end{gather*}
$$

We choose the Liapunoy function

$$
V=\frac{1}{2} \sum_{i} x_{i}^{* z}+V_{1}\left(z^{*}\right)
$$

Here $\quad V_{1}\left(z^{*}\right)$ is determined by the equation

$$
\sum_{j=1}^{h} \frac{\partial V_{1}}{\partial z_{j}^{*}} \sum_{i=1}^{h} b_{j l} z_{l}^{*}=-\sum_{j=1}^{h} z_{j}^{* 2}
$$

Function $V_{1}\left(z^{*}\right)$ is sign-definite because $\operatorname{Re} v_{j}<0$. Setting $x_{i}{ }^{*}=r^{*} \cos \gamma_{i}{ }^{*}$, $z_{j}^{*}=r^{*} \cos \gamma_{n+m+j}^{*}$ and computing the derivative of function V relative
to (1.18), we obtain

$$
\begin{aligned}
V^{*} & =r^{* 2} \sum_{i} \mu^{\mathrm{e}_{i}} h_{0 i} \cos ^{2} \gamma_{i}^{*}-r^{* 2} \sum_{j} \cos ^{2} \gamma_{n+m+j}^{*}+\sum_{k=1}^{4} \Lambda_{k} \\
\Lambda_{1} & =\mu r^{* 3} H_{1}\left(\gamma_{1}{ }^{*}, \ldots, \gamma_{n+m}^{*}, r^{*}\right) \\
\Lambda_{2} & =\mu^{2} r^{*} H_{2}\left(\gamma_{1}{ }^{*}, \ldots, \gamma_{n+m+h}^{*}, r^{*}, t, \theta, \mu\right) \\
\Lambda_{3} & =\mu r^{* 2} H_{3}\left(\gamma_{1}{ }^{*}, \ldots, \gamma_{n+m+h}^{*}, r^{*}, \theta, t\right) \\
\Lambda_{4} & =\mu^{2} r^{*} H_{4}\left(\gamma_{1}^{*}, \ldots, \gamma_{n+m+h}^{*}, r^{*}, \theta, t, \mu\right)
\end{aligned}
$$

Here $0<\varepsilon_{i} \leqslant 1, h_{0 i}<0$, the functions $\mu^{n} r^{* m} H_{k}$ are various products of $\mu^{n} x_{i} * X_{i j}$ and of the functions

$$
\Sigma \partial V_{1} / \partial z^{*}{ }_{j} \mu^{n} Z_{i j}{ }^{*}
$$

For a sufficiently small $\mu, V^{*}<0$ on the sphere

$$
\begin{equation*}
\sum_{i} x_{i}^{* 2}+\sum_{j} z_{j}^{* 2}=r^{* 2}=\left(\mu^{1-\varepsilon}\right)^{2} \tag{1.19}
\end{equation*}
$$

where ε is an arbitrarily small positive number. Consequently, if the initial values of $x_{i}{ }^{*}$ and $z_{j}{ }^{*}$ satisfy the conditions $\left|x_{i}{ }^{*}\left(t_{0}\right)\right|<L$ and $\left|z_{j}{ }^{*}\left(t_{0}\right)\right|<L$ (L defines a domain into which the points of the surface $V=M$ do not penetrate, where M is the lower bound of V on sphere (1.19)), then $\left|x_{i}^{*}(t)\right|<\mu^{1-\varepsilon}$ and $\left|z_{j}{ }^{*}(t)\right|<\mu^{1-\varepsilon} \quad$ for any t in the interval $(0, \infty)$.

Analogous arguments are valid for the case of multiple and complex roots. If among the $\lambda_{0 i}$ even one has a positive real part, the resulting solutions will not arbitrarily slightly differ from the solutions of the complete system. If among the $\lambda_{0 i}$ even one has a zero real part, then the problem of the existence of stationary oscillations in system (1.1) cannot be solved by using just terms of first order in μ.
2. Let us consider the resonance case. In contrast to Sect. 1 we assume that resonances of the form

$$
\sum_{s} \lambda_{s} k_{s}=E
$$

are possible for the pure imaginary roots $\pm i \lambda_{s}(s=1, \ldots, n)$ of the characteristic equation of system (1.1). We take it that the λ_{s} are commensurable with the frequency spectrum of the almost-periodic coefficients and functions in (1.1). The pure imaginary roots may be multiple with an arbitrary number of groups of solutions. In addition, we assume that when $X_{i 1} \equiv 0$ system (1.1) admits of almost-periodic solutions correct to within first order in μ. For the resonance case the system's canonic form is

$$
\begin{align*}
& y_{\mathrm{s}}^{\cdot}=-\lambda_{s} z_{s}+\beta_{s-1} y_{s-1}+\sum_{i=1}^{\infty} \mu^{i} Y_{s i}(y, z, u, v, t)+\sum_{i=0}^{\infty} \mu^{i} \varphi_{s i}(t) \tag{2.1}\\
& z_{s}^{\cdot}=\lambda_{\mathrm{s}} y_{s}+\beta_{s-1} z_{s-1}+\sum_{i=1}^{\infty} \mu^{i} Z_{s i}(y, z, u, v, t)+\sum_{i=0}^{\infty} \mu^{i} \psi_{s i}(t) \\
& u_{\alpha}^{\cdot}=\sigma_{\alpha-1} u_{\alpha-1}+\sum_{i=1}^{\infty} \mu^{i} U_{\alpha i}(y, z, u, v, t)+\sum_{i=0}^{\infty} \mu^{i} \theta_{\alpha i}(t)
\end{align*}
$$

$$
\begin{aligned}
& v_{j}^{*}=v_{j} v_{j}+x_{j-1} v_{j-1}+\sum_{i=1}^{\infty} \mu^{i} V_{j_{i}}(y, z, u, v, t)+\sum_{i=0}^{\infty} \mu^{i} \gamma_{j i}(t) \\
& \quad\left(\beta_{0}=\sigma_{0}=x_{0}=0\right)
\end{aligned}
$$

The general method of investigation of the system is analogous to that in Sect. 1 (also see [10]).

We apply a transformation analogous to that in 1° of Sect. 1 for the nonresonance case. After passing from variables y_{s} and z_{s} to the complex-conjugate variables ξ_{s} and $\bar{\xi}_{s}$ and after the changes

$$
\xi_{s}=p_{s} e^{i \lambda_{s} t}, \bar{\xi}_{s}=\bar{p}_{s} e^{-i \lambda_{s} t} \quad(s=1, \ldots, n)
$$

and taking into account that $\lambda_{s}=\lambda_{s-1}$ if $\beta_{s-1} \neq 0$, we obtain

$$
\begin{align*}
& p_{s}^{*}=\beta_{s-1} p_{s-1}+\mu P_{s 1}+O\left(\mu^{2}\right), \quad \bar{p}_{s}^{*}=\beta_{s-1} \bar{p}_{s-1}+\mu \bar{P}_{s 1}+ \tag{2,2}\\
& O\left(\mu^{2}\right) \\
& \eta_{\alpha^{*}}=\sigma_{\alpha-1} \eta_{\alpha-1}+\mu H_{\alpha 1}^{*}+O\left(\mu^{2}\right), \quad \zeta_{j}^{*}=v_{j} \zeta_{j}+x_{j-1} \zeta_{j-1}+ \\
& \quad \mu G_{j 1}+O\left(\mu^{2}\right)
\end{align*}
$$

Here the number of nonzero β_{s-1} is determined by the multiplicity of the critical roots and by the number of groups of solutions corresponding to the roots mentioned. The transformations in 2° and 3° are carried out analogously to the nonresonance case and system (2.2) is reduced to

$$
\begin{align*}
& r_{i}^{*}=g_{i-1} r_{i-1}+\mu \sum_{i \geqslant 1} R_{i 1}^{(l)} r_{1}^{l_{1}} \ldots r_{2 n+m}^{l_{2 n+m}}+O\left(\mu^{2}\right) \tag{2.3}\\
& \zeta_{j}=v_{j} \zeta_{j}+x_{j-1} \zeta_{j-1}+\mu G_{j 1} *(r, \zeta, t)+O\left(\mu^{2}\right) \\
& \left(r=\dot{r}_{1}, \ldots, r_{2 n+m} ; \zeta=\zeta_{1}, \ldots, \zeta_{h} ; \quad i=1, \ldots, 2 n+m\right. \\
& \left.l=l_{1}+\ldots+l_{2 n+m}\right)
\end{align*}
$$

In contrast to the nonresonance case the order of the subsystem corresponding to pure imaginary roots, in system (2.3), is not lowered.

If the equations

$$
g_{i-1} r_{i-1}+\mu \sum_{l \geqslant 1} R_{i 1}^{(l)} r_{1}^{l_{1}} \ldots r_{2 n+m}^{i_{2 n+m}}=0
$$

have real roots $r_{10}, \ldots, r_{2 n+m, 0}$, then, by substituting them into the transformations taking (2.1) to (2.3), we obtain the desired stationary solutions which are almostperiodic when the almost-periodic solutions for $\zeta_{j}(j=1, \ldots, h)$ are determined to within μ from the equations

$$
\begin{equation*}
\zeta_{j}=v_{j} \xi_{j}+x_{j-1} \xi_{j-1}+\mu G_{j 2}^{*}\left(r_{0}, \zeta, t\right) \quad\left(r_{0}=r_{10}, \ldots, r_{2 n+m, 0}\right) \tag{2.4}
\end{equation*}
$$

The method presented above for the construction of the Liapunov function for the stationary oscillations found under the condition that the roots of the corresponding characteristic equation have negative real parts leads to the inequalities

$$
\begin{equation*}
\left|r_{i}-r_{i 0}\right|<\mu^{1-\varepsilon}, \quad\left|\zeta_{j}-\zeta_{j 0}\right|<\mu^{1-\varepsilon} \tag{2.5}
\end{equation*}
$$

where ε is an arbitrarily small positive number and $\zeta_{j_{0}}$ are bounded solutions of (2.4). From inequalities (2.5) it follows that $\left|x_{k}-x_{k 0}\right|\left(k=1, \ldots, n_{1}\right)$ are of order μ for any t in the interval ($0, \infty$). The latter is not valid in the nonresonance case.
3. As an example let us consider the spatial oscillations of a rigid body in a liquid (see [11], for example), the motion of whose rudders has been approximated by almost-periodic time functions. The origin of the coordinate system Axyz connected with the body is located at the point of application of the buoyancy force, while the coordinate planes coincide with the body's planes of symmetry. The center of mass lies on the axis $A x$. The motion of a dynamically and geometrically axisymmetric body in a connected system is described by the following differential equations:

$$
\begin{aligned}
& u^{\cdot}=\frac{1}{k_{11}^{\prime}} f_{1}, \quad v^{*}=a\left(\rho_{z}^{\prime} f_{2}-x_{0} f_{6}\right), \quad w^{\cdot}=a\left(\rho_{z}^{\prime} f_{3} \mid-x_{0} f_{5}\right) \\
& p^{*}=\frac{1}{\rho_{x}^{\prime}} f_{4}, \quad q^{\cdot}=a\left(x_{0} f_{3}+k_{22}^{\prime} f_{5}\right), \quad r^{\cdot}=a\left(-x_{0} f_{2}+k_{22}^{\prime} f_{8}\right) \\
& \varphi^{*}=p-\operatorname{tg} \theta(q \cos \varphi-r \sin \varphi), \psi^{*}=\sec \theta(q \cos \varphi-r \sin \varphi) \\
& \theta^{*}=q \sin \varphi+r \cos \varphi \\
& f_{1}=m_{0}^{-1}\left(-c_{x} v_{0}^{2}+c_{p} \cos \psi \cos \theta\right)+x_{0}\left(q^{2}+r^{2}\right)+k_{22}{ }^{\prime}(v r-w q) \\
& f_{8}=m_{0}^{-1}\left[c_{v} v_{0}+c_{p}(\sin \varphi \sin \psi-\cos \varphi \cos \psi \sin \theta)\right]- \\
& k_{11}^{\prime} u r+k_{22}{ }^{\prime} w p-x_{0} p q \\
& f_{3}=m_{0}{ }^{-1}\left[c_{2} v_{0}^{2}+c_{p}(\cos \varphi \sin \psi+\sin \varphi \cos \psi \sin \theta)\right]+ \\
& k_{11}{ }^{\prime} u q-k_{28}{ }^{\prime} v p-x_{0} p q \\
& f_{4}=m_{0}{ }^{-1} b_{s} m_{x} v_{0}{ }^{2} \\
& f_{b}=m_{0}{ }^{-1}\left[m_{y} v_{0}{ }^{2}-c_{g} x_{c}(\sin \psi \cos \varphi+\cos \psi \sin \varphi \sin \theta)-\right. \\
& x_{0} u q+x_{0} v p+P_{z x} p r \\
& f_{\mathrm{f}}=m_{0}{ }^{-1}\left[m_{z} v_{0}^{2}+c_{g} x_{\mathrm{c}}(\sin \psi \sin \varphi-\cos \psi \cos \varphi \sin \theta)\right]- \\
& x_{0} u r+x_{0} w_{p}-P_{z x} p q \\
& a=\left(\rho_{z}^{\prime} k_{22}^{\prime}-x_{0}{ }^{2}\right)^{-1}, \quad P_{z x}=\rho_{z}^{\prime}-\rho_{x}^{\prime}, \quad u=\frac{v_{x}}{v_{s}}, \quad v=\frac{v_{y}}{v_{s}} \\
& w=\frac{v_{z}}{v_{z}}, \quad p=\omega_{x} \frac{l}{v_{s}}, \quad q=\omega_{y} \frac{l}{v_{s}}, \quad r=\omega_{z} \frac{l}{v_{s}} \\
& k_{i i}^{\prime}=1+\frac{\lambda_{i i}}{m} \quad(i=1,2), \quad k_{44}^{\prime}=1+\frac{\lambda_{44}}{J_{x}}, \quad k_{66}^{\prime}=1+\frac{\lambda_{66}}{J_{z}} \\
& k_{26}=\frac{\lambda_{26}}{m l}, \quad m_{0}=\frac{2 m}{\rho S l}, \quad \rho_{x}^{\prime}=\frac{J_{x}}{m l^{2}} k_{44}^{\prime}, \quad \rho_{x}^{\prime}=\frac{J_{z}}{m l^{2}} \hat{k}_{66}^{\prime} \\
& c_{p}=\frac{2(G-A)}{\rho S v_{s}{ }^{2}}, \quad c_{g}=\frac{2 G}{\rho S v_{s}{ }^{2}}, \quad x_{c}=\frac{x_{c}{ }^{*}}{l}, \quad b_{s}=\frac{b}{l} \\
& x_{0}=x_{c}+k_{26}, \quad v_{0}=\sqrt{u^{2}+v^{2}+w^{2}}
\end{aligned}
$$

Here v_{x}, v_{y}, v_{z} are the projections of the velocity of the point of application of the buoyancy force onto the connected axes $A x, A y, A z$, respectively, ω_{x}, ω_{y}, ω_{z} are the projections of the angular velocity, m is the body's mass, J_{x} and J_{z} are the axial moments of inertia, $\lambda_{i j}$ are the coefficients of the joining additional masses, G is the force of gravity, A is the buoyancy force, v_{s} is the steady-state value of the velocity of translation $x_{c}{ }^{*}$ is the coordinate of the center of mass, b
is the coordinate of the point of application of the resultant hydrodynamic forces acting on the rudder, relative to axis $A x, \rho$ is the liquid's density, S is the characteristic area, l is the characteristic dimension, φ, ψ, θ are the Euler angles, We assume the structure of the hydrodynamic coefficients to be as folluws:

$$
\begin{aligned}
& c_{x}=c_{x 0}+b_{3}\left(\alpha^{2}+\beta^{2}\right), m_{x}=m_{x}{ }^{p} p+m_{x}{ }^{9} \varphi+b_{4}\left(\alpha \delta_{i}+\beta \delta_{2}\right) \\
& c_{v}=c_{y}{ }^{\alpha} \alpha+c_{y}{ }^{\delta} \delta_{2}+c_{y}^{r} \frac{r}{v_{0}}+b_{1} \alpha^{z} \\
& m_{z}=m_{z}^{\alpha} \alpha+m_{z}^{\delta} \delta_{2}+m_{z}^{r} \frac{r}{v_{0}}+c_{1} \alpha^{3} \\
& c_{z}=-c_{y}^{\alpha} \beta-c_{y}^{\delta} \delta_{1}-c_{y}^{r} \frac{q}{v_{0}}-b_{1} \beta^{3}, m_{y}=m_{z}^{\alpha} \beta+m_{z}^{\delta} \delta_{1}+m_{z}^{r} \frac{q}{v_{0}}+c_{1} \beta^{3} \\
& \alpha=\operatorname{arctg}\left(-\frac{v}{u}\right), \quad \beta=\arcsin \frac{w}{v_{0}} \\
& \delta_{k}=A_{k}^{(1)} \sin \left(\omega_{k}^{(1)} t+\theta_{k}^{(1)}\right)+A_{k}^{(2)} \sin \left(\omega_{k}^{(2)} t+\theta_{k}^{(2)}\right) \quad(k=1,2)
\end{aligned}
$$

Here α and β are the attack and slip angles, δ_{k} are the rudder deflection angles, $\omega_{k}{ }^{(1)}$ and $\omega_{k}{ }^{(2)}$ are incommensurable frequencies.

We introduce

$$
x_{0}=\mu x_{0}^{*}, A_{k}^{(1)}=\mu A_{k}^{*(1)}, A_{k}^{(2)}=\mu A_{k}^{*(2)}, m_{x}^{\varphi}=\mu m_{x}^{* \varphi}
$$

and we seck the stationary solutions of (3.1) in the form

$$
u=u_{s}+\mu x_{1}, z_{i}=\mu x_{i}
$$

Here $u_{s}=\left(c_{p} / c_{x_{0}}\right)^{1 / 2}$ is the steady-state value of the velocity of the vertical deepening, $z_{i}=v, w, p, q, r, \varphi, \psi, 0$ for $i=2,3, \ldots, 9$, respectively. Setting $m_{z}{ }^{\alpha}=-c_{1}{ }^{\alpha} c_{g} k_{2 \beta} / c_{p}$ and $m_{z}^{r}=c_{y}{ }^{\alpha} \rho_{z}{ }^{\prime} / k_{22}{ }^{\prime}$, we obtain, in the characteristic equation of the system for x_{i}. two pairs of multiple pure imaginary roots with two groups of solutions, three zero roots with three groups of solutions, and two distinct negative roots.

Let us determine the stationary solutions of such a system from the terms of first order in μ. Making transformations analogous to those in Sect. 2 for the resonance case, we obtain

$$
\begin{aligned}
& r_{i}^{*}=\mu R_{i}+O\left(\mu^{2}\right), \quad(i=2,3,5, \ldots, 9) \\
& \zeta_{1}=a_{11} \zeta_{1}+\mu G_{11}\left(r, \zeta_{1}, \zeta_{4}, t\right)+O\left(\mu^{2}\right) \\
& \zeta_{4}=a_{44} \zeta_{4}+\mu G_{41}\left(r, \zeta_{1}, \zeta_{4}, t\right)+O\left(\mu^{2}\right) \\
& R_{2}=D_{202} r_{2}, R_{3}=D_{202} r_{3} \\
& R_{5}=D_{606} r_{5}+D_{609} r_{8}, R_{6}=D_{608} r_{6}+D_{609} r_{0} \\
& R_{7}=D_{707} r_{3}+D_{769}\left(r_{5} r_{9}-r_{6} r_{8}\right) \\
& R_{8}=-D_{609} r_{5}+D_{606} r_{8}, \quad R_{9}=-D_{909} r_{6}+D_{605} r_{9}
\end{aligned}
$$

Here $D_{i j k}$ are known constant coefficients and G_{11} and G_{41} are known polynomials with almost-periodic coefficients. Solving the amplitude equations and finding the stationary solutions for x_{i} correct within μ, we obtain, for example, for x_{2}

$$
x_{2}=-\sum_{\alpha=1}^{2}\left[\frac{M_{20}^{(\alpha)}}{\omega_{2}^{(\alpha)}} \cos \delta_{2}^{(\alpha)}\right]+\mu \sum_{\alpha=1}^{2}\left[B(t) H_{204}^{(\alpha)} \sin \delta_{1}^{(\alpha)}+\right.
$$

$$
\begin{aligned}
& B(t) Q_{204}^{(\alpha)} \cos \delta_{1}^{(\alpha)}+\left(A(t) H_{201}+\frac{F_{21}^{(\alpha)}}{\omega_{2}^{(\alpha)}}\right) \sin \delta_{2}^{(\alpha)}+ \\
& \left.\left(A(t) Q_{201}^{(\alpha)}-\frac{G_{21}^{(\alpha)}}{\omega_{2}^{(\alpha)}}\right) \cos \delta_{2}^{(\alpha)}\right]
\end{aligned}
$$

Here $M_{20}^{(\alpha)}, H_{204}^{(\alpha)}, Q_{204}^{(\alpha)}, H_{201}^{(\alpha)}, F_{21}^{(\alpha)}, G_{21}^{(\alpha)} \quad$ are constants, being combinations of the original coefficients, $A(t)$ and $B(t)$ are the solutions of the adjoint system, having the form

$$
\begin{aligned}
& A(t)=\frac{2 u_{8} x_{10} e^{\left(a_{11} t\right.}}{2 u_{z}+\mu x_{10}\left(1-e^{a_{11} t}\right)}, \quad x_{10}=x_{1}(0) \\
& B(t)=c_{1} \exp \left[a_{44} t+\mu \frac{2 a_{4 t}}{u_{s}} \int_{0}^{t} A(t) d t\right] \\
& \left(a_{11}<0, a_{44}<0, \delta_{1}^{(\alpha)}=\omega_{1}^{(\alpha)} t+\theta_{1}^{(\alpha)}, \delta_{2}^{(\alpha)}=\omega_{2}^{(\alpha)} t+\theta_{2}^{(\alpha)}\right)
\end{aligned}
$$

By choosing the hydrodynamic coefficients we can satisfy the existence conditions for the stationary solutions from terms of first order in μ. With prescribed numerical values we have compared the analytic solutions found with the solutions of system (3.1), obtained by numerical methods. The calculation results practically coincide.

REFERENCES

1. Kamenkov, G. V., Investigation of nonlinear oscillations with the aid of Liapunov functions. In: (Selected Works) lzbr, tr., Vol. 1. Moscow, "Nauka", 1971.
2. Li a punov, A. M., General Problem of Stability of Motion. In: (Collected Works), Sobr. Soch. , Vol. 2. Moscow - Leningrad, Izd, Akad. Nauk SSSR; 1956.
3. Erugin, N. P., Reducible Systems. Trudy Mat. Inst. im. Steklova, Vol. 13, 1946.
4. Malkin, L G., Certain Problems in the Theory of Nonlinear Oscillations. Moscow, Gostekhizdat, 1956.
5. Levitan, B. M., Almost-Periodic Functions. Moscow, Gostekhizdat, 1953.
6. K a m enkov, G. V., Stability and Oscillations of Nonlinear Systems. In : (Selected Works) Lzbr. Tr. , Vol. 2. Moscow, "Nauka", 1972.
7. Veretennikov,V. G., On the stability of almost-periodic motions. PMM Vol. 32, No. 1, 1968.
8. Chebotarev, N. G., Theory of Algebraic Functions. Moscow - Leningrad, Gostekhizdat, 1948.
9. Chetayev,N. G.: On Estimates of Approximate Integrations, Stability of Motion. Papers on Analytical Mechanics. Moscow, Lzd. Akad. Nauk SSSR, 1962. (See also PMM Vol. 21, No. 3, 1957).
10. Veretennikov, V. G., On the construction of solutions of quasilinear nonautonomous systems in resonance cases. PMM Vol. 33, No.6, 1969.
11. Pantov, E. N., Makhin, N. N. and Sheremetov, B. B., Fundamentals of the Theory of Motion of Submarines. Leningrad, "Sudostroenie", 1973.
